Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 3, pp 369–377 | Cite as

Development of a Novel Micro-Aerobic Cultivation Strategy for High Potential CotA Laccase Production

  • Nadia A. Samak
  • Jianhua Hu
  • Kefeng Wang
  • Chen Guo
  • Chunzhao Liu
Original Paper

Abstract

Recently, bacterial laccases has drawn researchers’ interest due to their ability to overcome high pH and salt concentration conditions compared to fungal laccases. Here we report a novel micro-aerobic cultivation strategy for enhancing CotA laccase expression and study its application for dye decolorization. Micro-aerobic cultivation of Escherichia coli BL21 (DE3) strain carrying pT7-FLAG-MAT-TAG-1-CotA had significantly enhanced CotA laccase activity up to 13903 U/L. The most unique findings of this investigation are that micro-aerobic cultivation strategy enhanced the reactive oxygen species production which consequently led to the over expression of CotA laccase gene. Malachite green, Crystal violet, Congo red and Bromophenol blue were efficiently decolorized by using purified CotA laccase without presence of any mediators at pH 6 and 9. These results provide a great platform for the dynamic production and application of bacterial laccase in industry.

Keywords

Bacillus subtilis Bacterial laccase CotA IPTG Micro-aerobic condition ROS 

Notes

Acknowledgements

The funding of this study was supported by the National Key Technology Research and Development Program of China (No. 2015BAK45B01), the National Natural Science Foundation of China (No. 21476242), and the National Basic Research Program (973 Program) of China (No. 2013CB733600). We would like to acknowledge the Chinese Government for the financial support of the Ph. D scholarship awarded to Nadia A. Samak.

References

  1. 1.
    Brander, S., Mikkelsen, J.D., Kepp, K.P.: Characterization of an akali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS ONE 9, e99402 (2014)CrossRefGoogle Scholar
  2. 2.
    Sharma, P., Goel, R., Capalash, N.: Bacterial laccases. World J. Microbiol. Biotechnol. 23, 823–832 (2007)CrossRefGoogle Scholar
  3. 3.
    Dwivedi, U.N., Singh, P., Pandey, V.P., Kumar, A.: Structure–function relationship among bacterial, fungal and plant laccases: review. J. Mol. Catal. B 68, 117–128 (2011)CrossRefGoogle Scholar
  4. 4.
    Lončar, N., Božić, N., Lopez-Santin, J., Vujčić, Z.: Bacillus amyloliquefaciens laccase—from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour. Technol. 147, 177–183 (2013)CrossRefGoogle Scholar
  5. 5.
    Guan, Z.B., Shui, Y., Song, C.M., Zhang, N., Cai, Y.J., Liao, X.R.: Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environ. Sci. Pollut. Res. 22, 9515–9523 (2015)CrossRefGoogle Scholar
  6. 6.
    Koschorreck, K., Richter, S.M., Ene, A.B., Roduner, E., Schmid, R.D., Urlacher, V.B.: Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl. Microbiol. Biotechnol. 79, 217–224 (2008)CrossRefGoogle Scholar
  7. 7.
    Dubé, E., Shareck, F., Hurtubise, Y., Daneault, C., Beauregard, M.: Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl. Microbiol. Biotechnol. 79, 597–603 (2008)CrossRefGoogle Scholar
  8. 8.
    Lu, L., Wang, T.N., Xu, T.F., Wang, J.Y., Wang, C.L., Zhao, M.: Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour. Technol. 134, 81–86 (2013)CrossRefGoogle Scholar
  9. 9.
    Mohorčič, M., Benčina, M., Friedrich, J., Jerala, R.: Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresour. Technol. 100, 851–858 (2009)CrossRefGoogle Scholar
  10. 10.
    Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., Richter, M.: Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci. Rep. (2015). doi: 10.1038/srep10465 Google Scholar
  11. 11.
    Santhanam, N., Vivanco, J.M., Decker, S.R., Reardon, K.F.: Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol. 29, 480–489 (2011)CrossRefGoogle Scholar
  12. 12.
    Durão, P., Chen, Z., Fernandes, A.T., Hildebrandt, P., Murgida, D.H., Todorovic, S., Pereira, M.M., Melo, E.P., Martins, L.O.: Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J. Biol. Inorg. Chem. 13, 183–193 (2008)CrossRefGoogle Scholar
  13. 13.
    Salmon, K.A., Hung, S.P., Steffen, N.R., Krupp, R., Baldi, P., Hatfield, G.W., Gunsalus, R.P.: Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J. Biol. Chem. 280(15), 15084–15096 (2005)CrossRefGoogle Scholar
  14. 14.
    Constantinidou, C., Hobman, J.L., Griffiths, L., Patel, M.D., Penn, C.W., Cole, J.A., Overton, T.W.: A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J. Biol. Chem. 281(8), 4802–4815 (2006)CrossRefGoogle Scholar
  15. 15.
    Partridge, J.D., Sanguinetti, G., Dibden, D.P., Roberts, R.E., Poole, R.K., Green, J.: Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 282, 11230–11237 (2007)CrossRefGoogle Scholar
  16. 16.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  18. 18.
    Wilson, C.M.: Staining of proteins on gels: comparison of dyes and procedures. Methods Enzymol. 91, 236–247 (1983)CrossRefGoogle Scholar
  19. 19.
    Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25, 402–408 (2001)CrossRefGoogle Scholar
  20. 20.
    Nygren, P.A., Stefan, S., Uhlén, M.: Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12, 184–188 (1994)CrossRefGoogle Scholar
  21. 21.
    Bentley, W.E., Davis, R.H., Kompala, D.S.: Dynamics of induced cat expression in Escherichia coli. Biotechnol. Bioeng. 38, 749–760 (1991)CrossRefGoogle Scholar
  22. 22.
    Duan, K.J., Lin, M.T., Hung, Y.C., Lin, C.T., Chen, C.W., Sheu, D.C.: Production of GST-SOD fusion protein by recombinant E coli XL1 Blue. J. Chem. Technol. Biotechnol. 75, 722–728 (2000)CrossRefGoogle Scholar
  23. 23.
    Brissos, V., Pereira, L., Munteanu, F.D., Paulo, A.C., Lígia O., Martins, L.O.: Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol. J. 4, 558–563 (2009)CrossRefGoogle Scholar
  24. 24.
    Wang, C., Cui, D., Lei Lu, L., Zhang, N., Yang, H., Zhao, M., Dai, S.: Cloning and characterization of CotA laccase from Bacillus subtilis WD23 decoloring dyes. Ann. Microbiol. 66, 461–467 (2016)CrossRefGoogle Scholar
  25. 25.
    Hu, J.H., Wang, F., Liu, C.Z.: Development of an efficient process intensification strategy for enhancing Pfu DNA olymerase production in recombinant Escherichia coli. Bioprocess Biosyst. Eng. 38, 651–659 (2015)CrossRefGoogle Scholar
  26. 26.
    Lecina, M., Sarró, E., Casablancas, A., Godia, F., Cairo, J.J.: IPTG limitation avoids metabolic burden and acetic acid accumulation in induced fed-batch cultures of Escherichia coli M15 under glucose limiting conditions. Biochem. Eng. J. 70, 78–83 (2013)CrossRefGoogle Scholar
  27. 27.
    Imlay, J.A.: The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11(7), 443–454 (2013)CrossRefGoogle Scholar
  28. 28.
    Imlay, J.A.: Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr. Opin. Microbiol. 24,124–131(2015)CrossRefGoogle Scholar
  29. 29.
    Lucana, D.O.O., Wedderhoff, I., Groves, M.R.: ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J. Signal Transduct. (2012). doi: 10.1155/2012/605905 Google Scholar
  30. 30.
    Dalton, T.P., Shertzer, H.G., Alvaro Puga, A.: Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67–101 (1999)CrossRefGoogle Scholar
  31. 31.
    Kimura, T., Nishioka, H.: Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat. Res. 389, 237–242 (1997)CrossRefGoogle Scholar
  32. 32.
    Artsatbanov, V., Vostroknutova, G., Shleeva, M., Goncharenko, A., Zinin, A., Ostrovsky, D., Kapreliants, A.: Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria. Biochemistry 77, 362–371 (2012)Google Scholar
  33. 33.
    Moldes, M.D., Sanromán, A.: Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor. World J. Microbiol. Biotechnol. 22, 1197–1204 (2006)CrossRefGoogle Scholar
  34. 34.
    Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., Lumyong, S.: Biodegradation of bisphenol a and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl. Biochem. Biotechnol. 169, 539–545 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, F.: Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35, 7608–7614 (1996)Google Scholar
  36. 36.
    Kanagaraj, J., Senthilvelan, T., Panda, R.C.: Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy 17, 1443–1456 (2015)CrossRefGoogle Scholar
  37. 37.
    Rodrigues, C.S.D., Madeira, L.M., Boaventura, R.A.R: Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. J. Hazard Mater. 172, 1551–1559 (2009)CrossRefGoogle Scholar
  38. 38.
    Liu, H., Cheng, Y., Du, B., Tong, C., Liang, S., Han, S., Zheng, S., Lin, Y.: Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS ONE (2015). doi: 10.1371/journal.pone.0119833 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Nadia A. Samak
    • 1
    • 2
  • Jianhua Hu
    • 1
    • 2
  • Kefeng Wang
    • 1
    • 2
  • Chen Guo
    • 1
  • Chunzhao Liu
    • 1
  1. 1.State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations