Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 3, pp 465–477 | Cite as

Effects of Biomass Particle Size on Slow Pyrolysis Kinetics and Fast Pyrolysis Product Distribution

Original Paper

Abstract

Thermochemical conversion of lignocellulosic biomass is a promising technique to produce biofuels and intermediates. The effects of important parameters such as biomass particle size, shape, composition, heating rate, and residence time on the kinetics of devolatilization and bio-oil composition need to be understood thoroughly in order to successfully scale up the process. Pyrolysis of mixed wood sawdust of eight different particle sizes (26.5–925 µm) is conducted at nine different heating rates (0.5–100 °C min−1) in a thermogravimetric analyzer, and at fast heating rates (~10,000 °C s−1) in analytical pyrolyzer coupled with gas chromatograph/mass spectrometer. The apparent activation energies (Eα) evaluated by isoconversional Friedman method in the very slow (0.5–3 °C min−1), slow (5–20 °C min−1) and medium heating rate regimes (50–100 °C min−1) were 153–203, 174–251 and 286–380 kJ mol−1, respectively. The yield of phenolics and linear hydrocarbons decreased, while the production of gases like CO and CO2 increased with particle size during fast pyrolysis. High yield of aromatics was obtained with medium sized particles (362.5, 512.5 μm). This study demonstrates that Eα decreases and increases with particle size in the very slow and slow heating regimes, respectively, which is attributed to the effect of particle shape that induces mass transfer limitations in the transport of volatiles, and intraparticle thermal gradients that induce tar decomposition reactions.

Keywords

Biomass Pyrolysis Particle size Kinetics Friedman method Py-GC/MS 

Notes

Acknowledgements

The authors thank Department of Science and Technology (DST), India, for funding to procure thermogravimetric analyzer via FIST grant. R.V. thanks DST, India, for funding the Project via Grant No. SR/S3/CE/074/2012. The National Centre for Combustion Research and Development is sponsored by DST, India.

Supplementary material

12649_2016_9815_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4079 KB)

References

  1. 1.
    Mohan, D., Pittman Jr., C.U., Steele P.H.: Pyrolysis of wood/Biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)CrossRefGoogle Scholar
  2. 2.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012)CrossRefGoogle Scholar
  3. 3.
    Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R.: Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 105, 55–74 (2014)CrossRefGoogle Scholar
  4. 4.
    Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37, 611–630 (2011)CrossRefGoogle Scholar
  5. 5.
    Bridgeman, T.G., Darvell, L.I., Jones, J.M., Williams, P.T., Fahmi, R., Bridgwater, A.V., Barraclough, T., Shield, I., Yates, N., Thain, S.C., Donnison, I.S.: Influence of particle size on the analytical and chemical properties of two energy crops. Fuel. 86, 60–72 (2007)CrossRefGoogle Scholar
  6. 6.
    Mani, T., Murugan, P., Abedi, J., Mahinpey, N.: Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem. Eng. Res. Des. 88, 952–958 (2010)CrossRefGoogle Scholar
  7. 7.
    Aqsha, A., Mahinpey, N., Mani, T., Salak, F., Murugan, P.: Study of sawdust pyrolysis and its devolatilization kinetics. Can. J. Chem. Eng. 89, 1451–1457 (2011)CrossRefGoogle Scholar
  8. 8.
    Demirbas, A.: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 72, 243–248 (2004)CrossRefGoogle Scholar
  9. 9.
    Lu, H., Lp, E., Scott, J., Foster, P., Vickers, M., Baxter, L.L.: Effect of particle shape and size on devolatilization of biomass particle. Fuel. 89, 1156–1168 (2010)CrossRefGoogle Scholar
  10. 10.
    Okekunle, P.O., Watanabe, H., Pattanotai, T., Okazaki, K.J.: Effect of biomass size and aspect ratio on intra-particle tar decomposition during wood cylinder pyrolysis. Therm. Sci. Technol. 7, 1–15 (2012)CrossRefGoogle Scholar
  11. 11.
    Onay, O., Kockar, O.M.: Slow, fast and flash pyrolysis of rapeseed. Renew. Energy. 28, 2417–2433 (2003)Google Scholar
  12. 12.
    Paulsen, A.D., Mettler, M.S., Dauenhauer, P.J.: The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuels 27, 2126–2134 (2013)CrossRefGoogle Scholar
  13. 13.
    Haykiri-Acma, H.J.: The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Anal. Appl. Pyrolysis 75, 211–216 (2006)CrossRefGoogle Scholar
  14. 14.
    ASTM E1131-08, Standard test method for compositional analysis by thermogravimetry. http://www.astm.org/Standards/E1131.htm (2014). Accessed Jan 2015
  15. 15.
    Suriapparao, D.V., Ojha, D.K., Ray, T., Vinu, R.: Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J. Therm. Anal. Calorim. 117, 1441–1451 (2014)CrossRefGoogle Scholar
  16. 16.
    Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N.: ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)CrossRefGoogle Scholar
  17. 17.
    Simon, P.: Isoconversional methods fundamentals, meaning and application. J. Therm. Anal. Calorim. 76, 123–132 (2004)CrossRefGoogle Scholar
  18. 18.
    Sbirrazzuoli, N., Vincent, L., Mija, A., Guigo, N.: Integral, differential and advanced isoconversional methods: Complex mechanisms and isothermal predicted conversion-time curves. Chemom. Intell. Lab Syst. 96, 219–226 (2009)CrossRefGoogle Scholar
  19. 19.
    White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 91, 1–33 (2011)CrossRefGoogle Scholar
  20. 20.
    Wu, W., Cai, J., Liu, R.: Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind. Eng. Chem. Res. 52, 14376–14383 (2013)CrossRefGoogle Scholar
  21. 21.
    Pyroprobe® manual, C.D.S. Analytical Inc. U.S.A., http://files.instrument.com.cn/FilesCenter/20090428/2009428172842100691.pdf. Accessed on Nov 2016
  22. 22.
    Suriapparao, D.V., Pradeep, N., Vinu, R.: Bio-oil production from Prosopis juliflora via microwave pyrolysis. Energy Fuels 29, 2571–2581 (2015)CrossRefGoogle Scholar
  23. 23.
    Shulga, G., Betkers, T., Shakels, V., Neiberte, B., Verovkins, A., Brovkina, J., Belous, O., Ambrazaitene, A., Žukauskaite, A.: Effect of the modification of lignocellulosic materials with a lignin-polymer complex on their mulching properties. Bioresources 2, 572–582 (2007)Google Scholar
  24. 24.
    Pasangulapati, V., Ramachandriya, K.D., Kumar, A., Wilkins, M.R., Jones, C.L., Huhnke, R.K.: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour. Technol. 114, 663–669 (2012)CrossRefGoogle Scholar
  25. 25.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)CrossRefGoogle Scholar
  26. 26.
    Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H.: Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 101, 4646–4655 (2010)CrossRefGoogle Scholar
  27. 27.
    Dalluge, D.L., Daugaard, T., Johnston, P., Kushiyil, N., Wright, M.M., Brown, R.C.: Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem. 16, 4144–4155 (2014)CrossRefGoogle Scholar
  28. 28.
    Trendewics, A., Evans, R., Dutta, A., Sykes, R., Carpenter, D., Braun, R.: Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenerg. 74, 15–25 (2015)CrossRefGoogle Scholar
  29. 29.
    Di Blasi, C., Branca, C., Galgano, A.: Thermal and catalytic decomposition of wood impregnated with sulfur-and phosphorus containing ammonium salts. Polym. Degrad. Stab. 93, 335–346 (2008)CrossRefGoogle Scholar
  30. 30.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)CrossRefGoogle Scholar
  31. 31.
    Shen, J., Wang, X.-S., Garcia-Perez, M., Mourant, D., Rhodes, M.J., Li, C.-Z.: Effect of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88, 1810–1817 (2009)CrossRefGoogle Scholar
  32. 32.
    Chen, W.-H., Kuo, P.-C.: Torrefaction and co-torrefaction of hemicellulose, cellulose and lignin as well as torrefaction of the some basic constituents in biomass. Energy 36, 803–811 (2011)CrossRefGoogle Scholar
  33. 33.
    Di Blasi, C.: Influences of physical properties on biomass devolatilization characteristics. Fuel 76, 957–964 (1997)CrossRefGoogle Scholar
  34. 34.
    Di Blasi, C.: Modelling intra- and extra-particle processes of wood fast pyrolysis. AIChE J. 48, 2386–2397 (2002)CrossRefGoogle Scholar
  35. 35.
    Biagini, E., Guerrini, L., Nicolella, C.: Development of a variable activation energy model for biomass devolatilization. Energy Fuels 23, 3300–3306 (2009)CrossRefGoogle Scholar
  36. 36.
    Gašparovič, L., Koreňová, Z., Jelemenskỳ, Ľ.: Kinetic study of wood chips decomposition by TGA. Chem. Pap 4, 174–181 (2010)Google Scholar
  37. 37.
    Wu, W., Mei, Y., Zhang, L., Liu, R., Cai, J.: Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels 28, 3916–3923 (2014)CrossRefGoogle Scholar
  38. 38.
    Shang, H., Lu, R.-R., Shang, L., Zhang, W.-H.: Effect of additives on the microwave-assisted pyrolysis of sawdust. Fuel Proc. Technol. 131, 167–174 (2015)CrossRefGoogle Scholar
  39. 39.
    Cai, J., Wu, W., Liu, R.: An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 236–246 (2014)CrossRefGoogle Scholar
  40. 40.
    Cai, J., Wu, W., Liu, R., Huber, G.W.: A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 15, 1331–1340 (2013)CrossRefGoogle Scholar
  41. 41.
    Patwardhan, P.R., Brown, R.C., Shanks, B.H.: Understanding the fast pyrolysis of lignin. ChemSusChem. 4, 1629–1636 (2011)CrossRefGoogle Scholar
  42. 42.
    Patwardhan, P.R., Brown, R.C., Shanks, B.H.: Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem. 4, 636–643 (2011)CrossRefGoogle Scholar
  43. 43.
    Mettler, M.S., Mushrif, S.H., Paulsen, A.D., Javadekar, A.D., Vlachos, D.G., Dauenhauer, P.J.: Revealing pyrolysis chemistry for biofuel production: conversion of cellulose to furans and small oxygenates. Energy Environ. Sci. 5, 5414–5424 (2012)CrossRefGoogle Scholar
  44. 44.
    Ren, X., Gou, J., Wang, W., Li, Q., Chang, J., Li, B.: Optimization of bark fast pyrolysis for the production of phenol-rich bio-oil. Bioresources 8, 6481–6492 (2013)Google Scholar
  45. 45.
    Zhou, S., Garcia-Perez, M., Pecha, B., McDonald, A.G., Westerhof, R.J.M: Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel 125, 15–19 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering and National Centre for Combustion Research and DevelopmentIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations