Waste and Biomass Valorization

, Volume 9, Issue 3, pp 357–367 | Cite as

Optimization of Cellulase Production by Trichoderma Strains Using Crude Glycerol as a Primary Carbon Source with a 24 Full Factorial Design

  • Kally Alves de Sousa
  • Genilton Silva da Faheina Junior
  • Diana Cristina Silva de Azevedo
  • Gustavo Adolfo Saavedra Pinto
Original Paper


This work focuses on the optimization of cellulase production by two Trichoderma strains. A 24 full factorial design was used to evaluate the effects of four factors in the optimization of cellulase production (filter paper assay—FPA): crude glycerol, microcrystalline cellulose, yeast extract and ammonium sulfate. In fermentation with Trichoderma CMIAT 054 strain the largest FPA (138.48 FPU L−1) occurred with 25.0 g L−1 of cellulose, 10.0 g L−1 of crude glycerol, 1.4 g L− 1 of yeast extract and 3.5 g L− 1 of ammonium sulfate in the culture medium. In tests with Trichoderma CMIAT 041 strain the highest FPA (89.35 FPU L−1) occurred with 25.0 g L−1 of cellulose, 20.0 g L−1 of crude glycerol, 0.6 g L−1 of yeast extract and 1.5 g L−1 of ammonium sulfate in the culture medium. ANOVA showed a correlation coefficient of 93 and 88% for Trichoderma CMIAT 054 and CMIAT 041 strains, respectively. Reduced regression models for the cellulase produced by these strains were obtained.


Optimization of cellulase production Additional carbon source Crude glycerol 



The authors would like to thank the Coordination for the Upgrading of Higher Education Personnel (CAPES, Brazil)—Project AUXPE PNPD 2491/2009. Thanks are also due to the Foundation for Support in Scientific and Technological Development (FUNCAP) of the state of Ceará, Brazil.


  1. 1.
    Ramkumar, S., Kirubakaran, V.: Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: a critical review. Energy Convers. Manage. 118, 155–169 (2016)CrossRefGoogle Scholar
  2. 2.
    Skorupskaite, V., Makareviciene, V., Gumbyte, M.: Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Process. Technol. 150, 78–87 (2016)CrossRefGoogle Scholar
  3. 3.
    Quispe, C. A. G., Coronado, C. J. R., Carvalho, J. R. J. A.: Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27, 475–493 (2013)CrossRefGoogle Scholar
  4. 4.
    Ayoub, M., Abdullah, A. Z.: Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 16, 2671–2686 (2012)CrossRefGoogle Scholar
  5. 5.
    Garlapati, V. K., Shankar, U., Budhiraja, A.: Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. 9, 9–14 (2016)CrossRefGoogle Scholar
  6. 6.
    Tan, H. W., Abdul Aziz, A. R., Aroua, M. K.: Glycerol production and its applications as a raw material: a review. Renew Sustain. Energy Rev. 27, 118–127 (2013)CrossRefGoogle Scholar
  7. 7.
    Yang, F., Hanna, M. A., Sun, R.: Value-added uses for crude glycerol: a byproduct of biodiesel production. Biotechnol. Biofuels, 5 (13) (2012)Google Scholar
  8. 8.
    Rodriguez, A., Wojtusik, M., Ripoll, V., Santos, V. E., Garcia–Ochoa, F.: 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: operational conditions and kinetics in batch cultivations. Bioresour. Technol. 200, 830–837 (2016)CrossRefGoogle Scholar
  9. 9.
    Silva, G. P., Lima, C. J. B., Contiero, J.: Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal. Today. 257, 259–266 (2015)CrossRefGoogle Scholar
  10. 10.
    Pflügl, S., Marx, H., Mattanovich, D., Sauer, M.: Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Biores. Technol. 152, 499–504 (2014)CrossRefGoogle Scholar
  11. 11.
    Viveka, N., Pandeya, A., Binoda, P.: Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213, 222–230 (2016)CrossRefGoogle Scholar
  12. 12.
    Cutzu, R., Coi, A., Rosso, F., Bardi, L., Ciani, M., Budroni, M., Zara, G., Zara, S., Mannazzu, I.: From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J. Microbiol. Biotechnol. 29(6), 1009–1017 (2013)CrossRefGoogle Scholar
  13. 13.
    Feng, X., Walker, T. H., Bridges, W. C., Thornton, C., Gopalakrishnan, K.: Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Biores. Technol. 166, 17–23 (2014)CrossRefGoogle Scholar
  14. 14.
    Petrik, S., Marova, I., Haronikova, A., Kostovova, I., Breierova, E.: Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production: a comparative screening study. Ann Microbiol. 63, 1537–1551 (2013)CrossRefGoogle Scholar
  15. 15.
    Polburee, P., Yongmanitchai, W., Lertwattanasakul, N., Ohashi, T., Fujiyama, K., Limtong, S.: Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 119 (12), 1194–1204 (2015)CrossRefGoogle Scholar
  16. 16.
    Taccari, M., Canonico, L., Comitini, F., Mannazzu, I., Ciani, M.: Screening of yeasts for growth on crude glycerol and optimization of biomass production. Biores. Technol. 110, 488–495 (2012)CrossRefGoogle Scholar
  17. 17.
    Valduga, E., Ribeiro, A. H. R., Cence, K., Colet, R., Tiggemann, L., Zeni, J., Toniazzo, G.: Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal. Agric. Biotechnol. 3, 207–213 (2014)Google Scholar
  18. 18.
    Yen, H.W., Chang, J.T., Chang, J.S.: The growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using mixture substrates of rice straw hydrolysate and crude glycerol. Biomass Bioenerg. 80, 38–43 (2015)CrossRefGoogle Scholar
  19. 19.
    Yen, H.W., Yang, Y.C., Yu, Y.H.: Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. J. Biosci. Bioeng. 114(4), 453–456 (2011)CrossRefGoogle Scholar
  20. 20.
    García-Fraile, P., Silva, L. R., Sánchez-Márquez, S., Velázquez, E., Rivas, R.: Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol. Food Chem. 139, 31–34 (2013)CrossRefGoogle Scholar
  21. 21.
    Morgunov, I. G., Kamzolova, S. V., Lunina, J. N.: The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl. Microbiol. Biotechnol. 197, 7387–7397 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhou, Y., Nie, K., Zhang, X., Liu, S., Wang, M., Deng, L., Wang, F., Tan, T.: Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresour. Technol. 163, 48–53 (2014)CrossRefGoogle Scholar
  23. 23.
    Pirog, T., Shulyakova, M., Sofilkanych, A., Shevchuk, T., Mashchenko, O.: Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMVB-7241 and Nocardia vaccinii IMV B-7405 on by product of biodiesel production. Food Bioprod. Process. 93, 11–18 (2015)CrossRefGoogle Scholar
  24. 24.
    Silva, N. M. P. R., Rufino, R. D., Luna, J. M., Santos, V. A., Sarubbo, L. A.: Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 3, 132–139 (2014)Google Scholar
  25. 25.
    Chookaew, T., O-Thong, S., Prasertsan, P.: Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int. J. Hydrog. Energy 40(24), 7433–7438 (2015)CrossRefGoogle Scholar
  26. 26.
    Dounavis, A. S., Ntaikou, I., Lyberatos, G.: Production of biohydrogen from crude glycerol in an upflow column bioreactor. Biores. Technol. 198, 701–708 (2015)CrossRefGoogle Scholar
  27. 27.
    Gallardo, R., Alves, M., Rodrigues, L. R.: Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass Bioenerg. 71, 134–143 (2014)CrossRefGoogle Scholar
  28. 28.
    Khanna, S., Goyal, A., Moholkar, V. S.: Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel 112, 557–561 (2013)CrossRefGoogle Scholar
  29. 29.
    Yadav, S., Rawat, G., Tripathi, P., Saxena, R. K.: A novel approach for biobutanol production by Clostridium acetobutylicum using glycerol: a low cost substrate. Renew. Energ. 71, 37–42 (2014)CrossRefGoogle Scholar
  30. 30.
    Hu, Z. C., Zheng, Y. G., Shen, Y. C.: Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Biores. Technol. 102, 7177–7182 (2011)CrossRefGoogle Scholar
  31. 31.
    Liu, Y. P., Sun, Y., Tan, C., Li, H., Zheng, X. J., Jin, K. Q., Wang, G.: Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Biores. Technol. 142, 384–389 (2013)CrossRefGoogle Scholar
  32. 32.
    Kumar, P., Ray, S., Patel, S. K. S., Lee, J. K., Kalia, V. C.: Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 78, 9–16 (2015)CrossRefGoogle Scholar
  33. 33.
    Moreno, P., Yañez, C., Cardozo, N. S. M., Escalante, H., Combariza, M. Y., Guzman, C.: Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain. N. Biotechnol. 32(6), 682–689 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Zhang, Y. P.: Cellulases: characteristics, sources, production, and applications. In: Yang, S., El-Ensashy, H., Thongchul, N.. (eds.) Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, pp.131–146. Wiley, New Jersey (2013)CrossRefGoogle Scholar
  35. 35.
    Bhat, M.K.: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383 (2000)CrossRefGoogle Scholar
  36. 36.
    Paloheimo, M., Haarmann, T., Mäkinen, S., Vehmaanperä, J.: Production of Industrial Enzymes in Trichoderma reesei. In: Schmoll, M., Dattenböck, C.. (eds.) Gene Expression Systems in Fungi: Advancements and Applications, pp. 23–57. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  37. 37.
    Anwara, Z., Gulfraz, M., Irshada, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7(2), 163–173 (2014)CrossRefGoogle Scholar
  38. 38.
    Rocha, V. A. L., Maeda, R. N., Santa Anna, L. M. M., Pereira, N.: Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electron. J. Biotechnol. 16(5), 1–13 (2013)CrossRefGoogle Scholar
  39. 39.
    Xiong, L., Huang, C., Peng, W., Tang, L., Yang, X., Chen, X., Chen, X., Ma, L., Chen, Y.: Efficient cellulase production from low-cost substrates by Trichoderma reesei and its application on the enzymatic hydrolysis of corncob. Afr. J. Microbiol. Res. 7(43), 5018–5024 (2013)CrossRefGoogle Scholar
  40. 40.
    Omojasola, P. F., Jilani, O. P.: Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange. Pak. J. Biol. Sci. 11(20), 2382–2388 (2008)CrossRefGoogle Scholar
  41. 41.
    Liming, X., Xueliang, S.: High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol. 91, 259–262 (2004)CrossRefGoogle Scholar
  42. 42.
    Ilmén, M., Saloheimo, A., Onnela, M.-L., Pen ttilä, M.E.: Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63(4), 1298–1306 (1997)Google Scholar
  43. 43.
    Lo, C.M., Ju, L.K.: Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme Microb. Technol. 44(2), 107–111 (2009)CrossRefGoogle Scholar
  44. 44.
    Vaheri, M.P., Vaheri, M.E.O., Kauppinen, V.S.: Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Eur. J. Appl. Microbiol. 8, 73–80 (1979)CrossRefGoogle Scholar
  45. 45.
    Delabona, P. S., Farinas, C. S., Silva, M. R., Azzoni, S. F., Pradella, J.G. C.: Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour. Technol. 107, 517–521 (2012)CrossRefGoogle Scholar
  46. 46.
    Delabona, P. S., Lima, D. J., Robl, D., Rabelo, S. C., Farinas, C. S., Pradella, J. G. C.: Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J. Ind. Microbiol. Biotechnol. 43, 617–626 (2016)CrossRefGoogle Scholar
  47. 47.
    Mandels, M., Weber, J.: The production of cellulases. Adv. Chem. Ser. 95, 391–414 (1969)CrossRefGoogle Scholar
  48. 48.
    Farid, M. A., El-Shahed, K. Y.: Cellulase production on high levels of cellulose and corn steep liquor. Zentralbl. Mikrobiol. 148, 277–283 (1993)Google Scholar
  49. 49.
    Ghose, T. K., Sahai, V.: Production of cellulases by Trichoderma reesei QM 9414 in fed-batch and continuous-flow culture with cell recycle. Biotechnol. Bioeng. 21(2), 283–296 (1979)CrossRefGoogle Scholar
  50. 50.
    Sternberg, D., Dorval, S.: Cellulase production and ammonium metabolism in Trichoderma reesei on high levels of cellulose. Biotechnol. Bioeng. 21, 181–191 (1979)CrossRefGoogle Scholar
  51. 51.
    Myers, R. H., Montgomery, D. C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (2002)MATHGoogle Scholar
  52. 52.
    Baş, D., Boyaci, I. H.: Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78(3), 836–845 (2007)CrossRefGoogle Scholar
  53. 53.
    Ghose, T. K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)Google Scholar
  54. 54.
    Miller, G. L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  55. 55.
    Sousa, K. A., Faheina Junior, G. S., Lima, K. T. L., Pinto, G. A. S., Aguiar, R. S. S. Azevedo, D. C. S.: Evaluation of the use of raw glycerol in biomass production by Trichoderma reesei QM9414. BMC Proc. 8(Suppl 4), P173 (2014)CrossRefGoogle Scholar
  56. 56.
    Rumbold, K., Van Buijsen, H. J. J., Overkamp, K. M., Van Groenstijn, J. W., Punt, P. J., Van der Werf, M. J.: Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb. Cell Fact. 8, 64 (2009)CrossRefGoogle Scholar
  57. 57.
    Wu, G., He, R., Jia, W., Chao, Y., Chen, S.: Strain improvement and process optimization of Trichoderma reesei Rut C30 for enhanced cellulase production. Biofuels 2(5), 545–555 (2011)CrossRefGoogle Scholar
  58. 58.
    Rodriguez-Gomez, D., Hobley, T. J.: Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30. World J. Microb. Biot. 29(11), 2157–2165 (2013)CrossRefGoogle Scholar
  59. 59.
    Ryu, D. Y., Mandels, M.: Cellulases: biosynthesis and applications. Enzyme Microb. Technol. 2, 91–102 (1980)CrossRefGoogle Scholar
  60. 60.
    Domingues, F. C., Queiroz, J. A., Cabral, J. M. S., Fonseca, L. P.: The influence of culture conditions on mycelial structure and cellulose production by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 26, 394–401 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kally Alves de Sousa
    • 1
  • Genilton Silva da Faheina Junior
    • 2
    • 3
  • Diana Cristina Silva de Azevedo
    • 2
  • Gustavo Adolfo Saavedra Pinto
    • 3
  1. 1.National Institute for Amazonian Research (INPA)ManausBrazil
  2. 2.Department of Chemical EngineeringFederal University of Ceará (UFC)FortalezaBrazil
  3. 3.Brazilian Agricultural Research Corporation (EMBRAPA), National Research Center for Tropical Agriculture Industry (CNPAT)FortalezaBrazil

Personalised recommendations