Waste and Biomass Valorization

, Volume 9, Issue 3, pp 343–355 | Cite as

Production of Levulinic Acid and Furfural by Microwave-Assisted Hydrolysis from Model Compounds: Effect of Temperature, Acid Concentration and Reaction Time

  • Nick Sweygers
  • Raf Dewil
  • Lise AppelsEmail author
Original Paper


In this study a system for the production of levulinic acid and furfural from lignocellulosic polysaccharides was investigated using cellulose and xylan as model compounds. The goal was to determine the optimum process conditions for a dilute acid hydrolysis of cellulose and xylan to levulinic acid and furfural, respectively. The yields of levulinic acid and furfural were investigated by optimization of the main process parameters, i.e., HCl concentration (cHCl), reaction temperature (T) and reaction time (t), via Response Surface Methodology. The reaction rate was increased by the use of microwave irradiation as an efficient heating method, allowing significant energy and time savings. The following optimal conditions for the conversion of cellulose to levulinic acid were obtained: T of 200 °C, t of 3.32 min and cHCl of 1.37 M. Similarly, the optimal conditions for the conversion of xylan to furfural were: T of 195 °C, t of 1 min and cHCl of 0.36 M. The value of all three process variables under scrutiny were higher for the production of levulinic acid. It can hence be concluded that (i) the optimal conversion of cellulose and xylan takes place at different process conditions, hampering the simultaneous conversion of both components present in lignocellulosic biomass, (ii) a further optimization of the process parameters is needed. However, the overall results of this study provide useful information to developing more cost-effective and efficient systems for the production of platform chemicals from lignocellulosic biomass.


Acid hydrolysis Microwave Response Surface Methodology Levulinic acid Furfural 



This research was financed in part by projects IMP/14/034 (KU Leuven Impuls Fund) and HB/14/005 (KU Leuven Industrial Research Fund).


  1. 1.
    Girisuta, B., Janssen LPBM, Heeres, H.J.: Kinetic study on the acid-catalysed hydrolysis of cellulose to levulinic acid. Ind. Eng. Chem. Res. 46, 1696–1708 (2007)CrossRefGoogle Scholar
  2. 2.
    Yemiş, O., Mazza, G.: Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102, 7371–7378 (2011). doi: 10.1016/j.biortech.2011.04.050 CrossRefGoogle Scholar
  3. 3.
    Choudhary V, Pinar AB, Sandler SI, et al.: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728 (2011). doi: 10.1021/cs200461t CrossRefGoogle Scholar
  4. 4.
    Wettstein, S.G., Martin Alonso, D., Gürbüz, E.I., Dumesic J.A.: A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem Eng. 1, 218–224 (2012). doi: 10.1016/j.coche.2012.04.002 CrossRefGoogle Scholar
  5. 5.
    Yang, Z., Kang, H., Guo, Y., et al.: Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind. Crops Prod. 46, 205–209 (2013). doi: 10.1016/j.indcrop.2013.01.031 CrossRefGoogle Scholar
  6. 6.
    Kang, M., Kim, S.W., Kim, J.W., et al.: Optimization of levulinic acid production from Gelidium amansii. Renew. Energy 54, 173–179 (2013). doi: 10.1016/j.renene.2012.08.028 CrossRefGoogle Scholar
  7. 7.
    Dussan, K., Girisuta, B., Haverty, D., et al.: Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour. Technol. 149, 216–224 (2013). doi: 10.1016/j.biortech.2013.09.006 CrossRefGoogle Scholar
  8. 8.
    Chang, C., Cen, P., Ma, X.: Levulinic acid production from wheat straw. Bioresour. Technol. 98, 1448–1453 (2007). doi: 10.1016/j.biortech.2006.03.031 CrossRefGoogle Scholar
  9. 9.
    Jin, F., Enomoto, H.: Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ. Sci. 4, 382 (2011). doi: 10.1039/c004268d CrossRefGoogle Scholar
  10. 10.
    Wang Y, Song H, Peng L, et al.: Recent developments in the catalytic conversion of cellulose. Biotechnol. Biotechnol. Equip. 28, 981–988 (2014). doi: 10.1080/13102818.2014.980049 CrossRefGoogle Scholar
  11. 11.
    Pileidis, F.D., Titirici, M.M.: Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem 9, 562–582 (2016). doi: 10.1002/cssc.201501405 CrossRefGoogle Scholar
  12. 12.
    Mondal, S., Mondal, J., Bhaumik, A.: Sulfonated porous polymeric nanofibers as an efficient solid acid catalyst for the production of 5-hydroxymethylfurfural from biomass. ChemCatChem 7, 3570–3578 (2015). doi: 10.1002/cctc.201500709 CrossRefGoogle Scholar
  13. 13.
    Richel, A., Laurent, P., Wathelet, B., et al.: Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chim. 14, 224–234 (2011). doi: 10.1016/j.crci.2010.04.004 CrossRefGoogle Scholar
  14. 14.
    Fang, Z., Smith, R., Qi, X.: Production of Biofuels and Chemicals with Microwave. Springer Science+Business Media, Dordrecht (2015)doi: 10.1007/978-94-017-9612-5 CrossRefGoogle Scholar
  15. 15.
    Chatterjee, C., Pong, F., Sen, A.: Chemical conversion pathways for carbohydrates. Green Chem. 17, 40–71 (2015). doi: 10.1039/c4gc01062k CrossRefGoogle Scholar
  16. 16.
    Möller, M., Schröder, U: Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Adv. 3, 22253 (2013). doi: 10.1039/c3ra43108h CrossRefGoogle Scholar
  17. 17.
    Verendel, J.J., Church, T.L., Andersson, P.G.: Catalytic one-pot production of small organics from polysaccharides. Synthesis (Stuttg) 1649–1677 (2011). doi: 10.1055/s-0030-1260008
  18. 18.
    Pierson, Y., Bobbink, F., Yan, N.: Alcohol Mediated Liquefaction of Lignocellulosic Materials†¯: A Mini Review. Chem. Eng. Process Tech. 1:1014–1019 (2013)Google Scholar
  19. 19.
    Van Zandvoort, I., Wang, Y., Rasrendra, C.B., et al.: Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions. ChemSusChem 6, 1745–1758 (2013). doi: 10.1002/cssc.201300332 CrossRefGoogle Scholar
  20. 20.
    Patil, S.K.R., Lund, C.R.F.: Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuels 25:4745–4755 (2011). doi: 10.1021/ef2010157 CrossRefGoogle Scholar
  21. 21.
    Yemiş, O., Mazza, G.: Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour. Technol. 109, 215–223 (2012). doi: 10.1016/j.biortech.2012.01.031 CrossRefGoogle Scholar
  22. 22.
    Qu, Y., Wei, Q., Li, H., et al.: Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids. Bioresour. Technol. 162, 358–364 (2014). doi: 10.1016/j.biortech.2014.03.081 CrossRefGoogle Scholar
  23. 23.
    Wyman, C.E.: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wiley, Hoboken (2013). doi: 10.1002/9780470975831 CrossRefGoogle Scholar
  24. 24.
    Dee, S.J., Bell, A.T.: A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. ChemSusChem 4, 1166–1173 (2011). doi: 10.1002/cssc.201000426 CrossRefGoogle Scholar
  25. 25.
    Girisuta, B., Dussan, K., Haverty, D., et al.: A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem. Eng. J. 217, 61–70 (2013). doi: 10.1016/j.cej.2012.11.094 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Process and Environmental Technology LabKU LeuvenSint-Katelijne-WaverBelgium

Personalised recommendations