Skip to main content

Advertisement

Log in

Production of Levulinic Acid and Furfural by Microwave-Assisted Hydrolysis from Model Compounds: Effect of Temperature, Acid Concentration and Reaction Time

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study a system for the production of levulinic acid and furfural from lignocellulosic polysaccharides was investigated using cellulose and xylan as model compounds. The goal was to determine the optimum process conditions for a dilute acid hydrolysis of cellulose and xylan to levulinic acid and furfural, respectively. The yields of levulinic acid and furfural were investigated by optimization of the main process parameters, i.e., HCl concentration (cHCl), reaction temperature (T) and reaction time (t), via Response Surface Methodology. The reaction rate was increased by the use of microwave irradiation as an efficient heating method, allowing significant energy and time savings. The following optimal conditions for the conversion of cellulose to levulinic acid were obtained: T of 200 °C, t of 3.32 min and cHCl of 1.37 M. Similarly, the optimal conditions for the conversion of xylan to furfural were: T of 195 °C, t of 1 min and cHCl of 0.36 M. The value of all three process variables under scrutiny were higher for the production of levulinic acid. It can hence be concluded that (i) the optimal conversion of cellulose and xylan takes place at different process conditions, hampering the simultaneous conversion of both components present in lignocellulosic biomass, (ii) a further optimization of the process parameters is needed. However, the overall results of this study provide useful information to developing more cost-effective and efficient systems for the production of platform chemicals from lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Girisuta, B., Janssen LPBM, Heeres, H.J.: Kinetic study on the acid-catalysed hydrolysis of cellulose to levulinic acid. Ind. Eng. Chem. Res. 46, 1696–1708 (2007)

    Article  Google Scholar 

  2. Yemiş, O., Mazza, G.: Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102, 7371–7378 (2011). doi:10.1016/j.biortech.2011.04.050

    Article  Google Scholar 

  3. Choudhary V, Pinar AB, Sandler SI, et al.: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728 (2011). doi:10.1021/cs200461t

    Article  Google Scholar 

  4. Wettstein, S.G., Martin Alonso, D., Gürbüz, E.I., Dumesic J.A.: A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem Eng. 1, 218–224 (2012). doi:10.1016/j.coche.2012.04.002

    Article  Google Scholar 

  5. Yang, Z., Kang, H., Guo, Y., et al.: Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind. Crops Prod. 46, 205–209 (2013). doi:10.1016/j.indcrop.2013.01.031

    Article  Google Scholar 

  6. Kang, M., Kim, S.W., Kim, J.W., et al.: Optimization of levulinic acid production from Gelidium amansii. Renew. Energy 54, 173–179 (2013). doi:10.1016/j.renene.2012.08.028

    Article  Google Scholar 

  7. Dussan, K., Girisuta, B., Haverty, D., et al.: Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour. Technol. 149, 216–224 (2013). doi:10.1016/j.biortech.2013.09.006

    Article  Google Scholar 

  8. Chang, C., Cen, P., Ma, X.: Levulinic acid production from wheat straw. Bioresour. Technol. 98, 1448–1453 (2007). doi:10.1016/j.biortech.2006.03.031

    Article  Google Scholar 

  9. Jin, F., Enomoto, H.: Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ. Sci. 4, 382 (2011). doi:10.1039/c004268d

    Article  Google Scholar 

  10. Wang Y, Song H, Peng L, et al.: Recent developments in the catalytic conversion of cellulose. Biotechnol. Biotechnol. Equip. 28, 981–988 (2014). doi:10.1080/13102818.2014.980049

    Article  Google Scholar 

  11. Pileidis, F.D., Titirici, M.M.: Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem 9, 562–582 (2016). doi:10.1002/cssc.201501405

    Article  Google Scholar 

  12. Mondal, S., Mondal, J., Bhaumik, A.: Sulfonated porous polymeric nanofibers as an efficient solid acid catalyst for the production of 5-hydroxymethylfurfural from biomass. ChemCatChem 7, 3570–3578 (2015). doi:10.1002/cctc.201500709

    Article  Google Scholar 

  13. Richel, A., Laurent, P., Wathelet, B., et al.: Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chim. 14, 224–234 (2011). doi:10.1016/j.crci.2010.04.004

    Article  Google Scholar 

  14. Fang, Z., Smith, R., Qi, X.: Production of Biofuels and Chemicals with Microwave. Springer Science+Business Media, Dordrecht (2015)doi:10.1007/978-94-017-9612-5

    Book  Google Scholar 

  15. Chatterjee, C., Pong, F., Sen, A.: Chemical conversion pathways for carbohydrates. Green Chem. 17, 40–71 (2015). doi:10.1039/c4gc01062k

    Article  Google Scholar 

  16. Möller, M., Schröder, U: Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Adv. 3, 22253 (2013). doi:10.1039/c3ra43108h

    Article  Google Scholar 

  17. Verendel, J.J., Church, T.L., Andersson, P.G.: Catalytic one-pot production of small organics from polysaccharides. Synthesis (Stuttg) 1649–1677 (2011). doi:10.1055/s-0030-1260008

  18. Pierson, Y., Bobbink, F., Yan, N.: Alcohol Mediated Liquefaction of Lignocellulosic Materials†¯: A Mini Review. Chem. Eng. Process Tech. 1:1014–1019 (2013)

    Google Scholar 

  19. Van Zandvoort, I., Wang, Y., Rasrendra, C.B., et al.: Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions. ChemSusChem 6, 1745–1758 (2013). doi:10.1002/cssc.201300332

    Article  Google Scholar 

  20. Patil, S.K.R., Lund, C.R.F.: Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuels 25:4745–4755 (2011). doi:10.1021/ef2010157

    Article  Google Scholar 

  21. Yemiş, O., Mazza, G.: Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour. Technol. 109, 215–223 (2012). doi:10.1016/j.biortech.2012.01.031

    Article  Google Scholar 

  22. Qu, Y., Wei, Q., Li, H., et al.: Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids. Bioresour. Technol. 162, 358–364 (2014). doi:10.1016/j.biortech.2014.03.081

    Article  Google Scholar 

  23. Wyman, C.E.: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wiley, Hoboken (2013). doi:10.1002/9780470975831

    Book  Google Scholar 

  24. Dee, S.J., Bell, A.T.: A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. ChemSusChem 4, 1166–1173 (2011). doi:10.1002/cssc.201000426

    Article  Google Scholar 

  25. Girisuta, B., Dussan, K., Haverty, D., et al.: A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem. Eng. J. 217, 61–70 (2013). doi:10.1016/j.cej.2012.11.094

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed in part by projects IMP/14/034 (KU Leuven Impuls Fund) and HB/14/005 (KU Leuven Industrial Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Appels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweygers, N., Dewil, R. & Appels, L. Production of Levulinic Acid and Furfural by Microwave-Assisted Hydrolysis from Model Compounds: Effect of Temperature, Acid Concentration and Reaction Time. Waste Biomass Valor 9, 343–355 (2018). https://doi.org/10.1007/s12649-016-9797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9797-5

Keywords

Navigation