Waste and Biomass Valorization

, Volume 9, Issue 3, pp 335–341 | Cite as

Biowaste Digestates: Influence of Pelletization on Nutrient Release and Early Plant Development of Oats

  • Christina-Luise Ross
  • Eva Mundschenk
  • Verena Wilken
  • Karen Sensel-Gunke
  • Frank Ellmer
Original Paper



Fermentation and composting of biowaste has become a preferred method for municipalities to recycle organic byproducts and their valuable nutrient content. Pelletization or agglomeration of the resulting digestates may improve their transportability and storability. The aim of this study was to determine the nutrient content and nutrient release from processed biowaste digestates and the immediate as well as the longer-term effect of their application on the early root and shoot development of oat (Avena sativa L.).


Rhizoboxes were used in which rooting compartment and soil are separated by nylon gauze, which allows nutrients and water to pass through, but denies direct contact between roots and soil or digestate products. The obtained root images were analyzed with the WinRhizo Software and chemical properties of the soil were determined at three dates over a period of 28 weeks.


Pelletization and agglomeration of digestates led to an increased immobilization of nutrients and organic matter contained in the digestate. The treated products remained in the soil rather unchanged over many months. A significant influence of the biowaste digestates on plant development was observed only during the first weeks after the application. The application of the digestate products did lead to an increase of total carbon and especially hot water-soluble carbon content in the soil.


The application of biowaste digestates seems therefore well suited for the improvement of humus content in soils. The fertilizing value of processed digestates, however, must be considered as very limited, regardless of their actual nutrient content.


Biowaste digestates Root morphology Fertilizing value Pelletization Agglomeration 



This study was funded by the Federal Ministry of Education and Research in Germany under Grant 03EK3527A. The authors thank Peter Lentzsch for providing the rhizoboxes and Liliane Ruess and her team for the help with and provision of the WinRhizo-Software.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wong, M.H.: Phytotoxicity of refuse compost during the process of maturation. Environ. Pollut. Ser. A 37(2), 159–174 (1985). doi: 10.1016/0143-1471(85)90006-6 CrossRefGoogle Scholar
  2. 2.
    Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain Energy Rev 38, 383–392 (2014). doi: 10.1016/j.rser.2014.05.038 CrossRefGoogle Scholar
  3. 3.
    Arthurson, V.: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawback. Energies 2(2), 226 (2009).CrossRefGoogle Scholar
  4. 4.
    Desalegn, G., Binner, E., Smidt, E., Lechner, P.: Horse Manure and Biowaste Composts as Growing Media Component Affects Plant Growth, pp. 1139–1142.African Crop Science Conference, Uganda (2005)Google Scholar
  5. 5.
    Kumar, P., Huang, C., Cai, J., Miklavcic, S.J.: Root phenotyping by root tip detection and classification through statistical learning. Plant Soil 380(1–2), 193–209 (2014). doi: 10.1007/s11104-014-2071-3 CrossRefGoogle Scholar
  6. 6.
    Bachmann, S., Uptmoor, R., Eichler-Löbermann, B.: Phosphorus distribution and availability in untreated and mechanically separated biogas digestates. Sci. Agric. 73, 9–17 (2016)CrossRefGoogle Scholar
  7. 7.
    Forde, B., Lorenzo, H.: The nutritional control of root development. Plant Soil 232(1/2), 51–68 (2001). doi: 10.1023/a:1010329902165 CrossRefGoogle Scholar
  8. 8.
    López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L.: The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6(3), 280–287 (2003). doi: 10.1016/s1369-5266(03)00035-9 CrossRefGoogle Scholar
  9. 9.
    Xue, Y.-F., Zhang, W., Liu, D.-Y., Yue, S.-C., Cui, Z.-L., Chen, X.-P., Zou, C.-Q.: Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field. Field Crops Res. 161, 38–45 (2014). doi: 10.1016/j.fcr.2014.01.009 CrossRefGoogle Scholar
  10. 10.
    Głąb, T.: Effect of tractor traffic and N fertilization on the root morphology of grass/red clover mixture. Soil Tillage Res. 134, 163–171 (2013). doi: 10.1016/j.still.2013.08.004 CrossRefGoogle Scholar
  11. 11.
    Ma, Z., Bielenberg, D.G., Brown, K.M., Lynch, J.P.: Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ. 24(4), 459–467 (2001). doi: 10.1046/j.1365-3040.2001.00695.x CrossRefGoogle Scholar
  12. 12.
    Cao, X., Chen, C., Zhang, D., Shu, B., Xiao, J., Xia, R.: Influence of nutrient deficiency on root architecture and root hair morphology of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under sand culture. Scientia Hortic. 162, 100–105 (2013). doi: 10.1016/j.scienta.2013.07.034 CrossRefGoogle Scholar
  13. 13.
    Williamson, L.C., Ribrioux, S.P.C.P., Fitter, A.H., Leyser, H.M.O: Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol. 126(2), 875–882 (2001). doi: 10.1104/pp.126.2.875 CrossRefGoogle Scholar
  14. 14.
    Hackett, C.: A study of the root system of barley: I Effects of nutrition on two varieties. New Phytol. 67, 287–299 (1968)CrossRefGoogle Scholar
  15. 15.
    Reibe, K., Götz, K.-P., Döring, T.F., Roß, C.-L., Ellmer, F.: Impact of hydro-/biochars on root morphology of spring wheat. Arch. Agron. Soil Sci. 1–14 (2014). doi: 10.1080/03650340.2014.983090
  16. 16.
    Meier, U.: Growth stages of mono-and dicotyledonous plants—BBCH Monograph. Blackwell, Berlin (2001)Google Scholar
  17. 17.
    LTZ: Nachhaltige Kompostanwendung in der Landwirtschaft—Abschlussbericht Kompost-Anwendungsversuche Baden-Württemberg. Karlsruhe (2008)Google Scholar
  18. 18.
    Merbach, W., Wittenmayer, L., Augustin, J.: Stoffumsatz im wurzelnahen Raum: 9. Borkheider Seminar zur Ökophysiologie des Wurzelraumes. Leipzig (1999)Google Scholar
  19. 19.
    Rivard, C.J., Rodriguez, J.B., Nagle, N.J., Self, J.R., Kay, B.D., Soltanpour, P.N., Nieves, R.A.: Anaerobic digestion of municipal solid waste. Appl. Biochem. Biotechnol. 51(1), 125–135 (1995). doi: 10.1007/bf02933417 CrossRefGoogle Scholar
  20. 20.
    Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 12(3), 242–257 (2012). doi: 10.1002/elsc.201100085 CrossRefGoogle Scholar
  21. 21.
    Chiyoka, W.L., Zvomuya, F., Hao, X.: A bioassay of nitrogen availability in soils amended with solid digestate from anaerobically digested beef cattle feedlot manure. Soil Sci. Soc. America J. 78(4) (2014). doi: 10.2136/sssaj2013.01.0030
  22. 22.
    Hammac, W.A., Wood, C.W., Wood, B.H., Fasina, O.O., Feng, Y., Shaw, J.N.: Determination of bioavailable nitrogen and phosphorus from pelletized broiler litter. Sci. Res. Essays 2:89–94. (2007)Google Scholar
  23. 23.
    Lazcano, C., Arnold, J., Tato, A., Zaller, J.G., Domínguez, J.: Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Span. J. Agric. Res. 7(4), 944–951 (2009)CrossRefGoogle Scholar
  24. 24.
    Trinchera, A., Torrisi, B., Allegra, M., Rinaldi, S., Rea, E., Intrigliolo, F., Roccuzzo, G.: Effects of organic fertilization on soil organic matter and root morphology and density of orange trees. Acta Hortic. 1807–1813 (2015). doi: 10.17660/ActaHortic.2015.1065.231
  25. 25.
    Wang, C., Liu, W., Li, Q., Ma, D., Lu, H., Feng, W., Xie, Y., Zhu, Y., Guo, T.: Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 165, 138–149 (2014). doi: 10.1016/j.fcr.2014.04.011 CrossRefGoogle Scholar
  26. 26.
    Kozicki, C., Carlson, C.: Pros and cons of non-pressure agglomeration pellets and extruded pellets—Infomaterial from Feeco International. (2015). Accessed 3 Feb 2016

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Agricultural and Urban Ecological Projects affiliated to BerlinHumboldt UniversityBerlinGermany
  2. 2.Department of Crop and Animal Sciences, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural SciencesBerlin Humboldt UniversityBerlinGermany

Personalised recommendations