Skip to main content
Log in

Synthesis and Properties of Feather Keratin-Based Superabsorbent Hydrogels

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present work reports significant improvement in the performance of keratin based hydrogels. These hydrogels were synthesized by graft copolymerization of acrylic acid monomers on the hydrolyzed keratin proteins’ backbones in the presence of a crosslinker (N,N-methylenebis (acrylamide)) and initiators (sodium bisulfite and potassium persulfate). The grafting was confirmed by means of Fourier transform infrared spectroscopy. The contributions of the crosslinker, initiator and neutralization degree to the hydrogels were investigated through differential scanning calorimetry, swelling tests, and scanning electron microscopy. The highest equilibrium swelling of hydrogel in distilled water reached 501 g/g of hydrogel in 48 h. The swelling properties of the optimized hydrogel formulation were also studied at various pH and saline concentrations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hill, P., Brantley, H., Van Dyke, M.: Some properties of keratin biomaterials: kerateines. Biomaterials 31(4), 585–593 (2010)

    Article  Google Scholar 

  2. Yang, Y., Tong, Z., Geng, Y., Li, Y., Zhang, M.: Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J. Agric. Food Chem. 61(34), 8166–8174 (2013)

    Article  Google Scholar 

  3. Singh, B., Sharma, D.K., Dhiman, A., Gupta, A.: Applications of natural polysaccharide-based beads for slow release herbicide formulation. Toxicol. Environ. Chem. 93(4), 616–622 (2011)

    Article  Google Scholar 

  4. Sojka, R.E., Lentz, R.D.: Reducing furrow irrigation erosion with polyacrylamide (PAM). JPA 10(1), 47–52 (1997)

    Article  Google Scholar 

  5. Bakass, M., Mokhlisse, A., Lallemant, M.: Absorption and desorption of liquid water by a superabsorbent polymer: effect of polymer in the drying of the soil and the quality of certain plants. J. Appl. Polym. Sci. 83(2), 234–243 (2002)

    Article  Google Scholar 

  6. Pourjavadi, A., Ghasemzadeh, H., Soleyman, R.: Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci. 105(5), 2631–2639 (2007)

    Article  Google Scholar 

  7. Zohuriaan-Mehr, M.J., Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. 17(6), 451–477 (2008)

    Google Scholar 

  8. Pourjavadi, A., Kurdtabar, M., Mahdavinia, G.R., Hosseinzadeh, H.: Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym. Bull. 57(6), 813–824 (2006)

    Article  Google Scholar 

  9. Pourjavadi, A., Salimi, H.: New protein-based hydrogel with superabsorbing properties: effect of monomer ratio on swelling behavior and kinetics. Ind. Eng. Chem. Res. 47(23), 9206–9213 (2008)

    Article  Google Scholar 

  10. Zhang, B., Cui, Y., Yin, G., Li, X., You, Y.: Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. Int. J. Polym. Mater. Polym. Biomater. 59(12), 1018–1032 (2010)

    Article  Google Scholar 

  11. Shi, W., Dumont, M.-J., Ly, E.B.: Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur. Polym. J. 54, 172–180 (2014)

    Article  Google Scholar 

  12. Li, M., Jin, E., Zhang, L.: Effects of graft modification on the water solubility, apparent viscosity, and adhesion of feather keratin for warp sizing. J. Text. Inst. 107, 395–404 (2016)

    Article  Google Scholar 

  13. Hu, X., Cebe, P., Weiss, A.S., Omenetto, F., Kaplan, D.L.: Protein-based composite materials. Mater. Today 15(5), 208–215 (2012)

    Article  Google Scholar 

  14. McGovern, V.: Recycling poultry feathers: more bang for the cluck. Environ. Health Perspect. 108(8), A366–A369 (2000)

    Article  Google Scholar 

  15. Ullah, A., Wu, J.: Feather fiber-based thermoplastics: effects of different plasticizers on material properties. Macromol. Mater. Eng. 298(2), 153–162 (2013)

    Article  Google Scholar 

  16. Reddy, N., Chen, L., Yang, Y.: Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C 33(3), 1203–1208 (2013)

    Article  Google Scholar 

  17. Aluigi, A., Varesano, A., Montarsolo, A., Vineis, C., Ferrero, F., Mazzuchetti, G., et al.: Electrospinning of keratin/poly(ethylene oxide)blend nanofibers. J. Appl. Polym. Sci. 104(2), 863–870 (2007)

    Article  Google Scholar 

  18. Hadas, A., Kautsky, L.: Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil. Res. 38(2), 165–170 (1994)

    Article  Google Scholar 

  19. Gurav, R., Jadhav, J.: A novel source of biofertilizer from feather biomass for banana cultivation. Environ. Sci. Pollut. Res. 20(7), 4532–4539 (2013)

    Article  Google Scholar 

  20. Kavitha, A., Boopalan, K., Radhakrishnan, G., Sankaran, S., Das, B.N., Sastry, T.P.: Preparation of feather keratin hydrolyzate-gelatin composites and their graft copolymers. J Macromol. Sci. Part A 42(12), 1703–1713 (2005)

    Article  Google Scholar 

  21. García-Sabido, D., López-Mesas, M., Carrillo-Navarrete, F.: Chicken feather fibres waste as a low-cost biosorbent of acid Blue 80 dye. Desalin. Water Treat. 57, 3732–3740 (2016)

    Article  Google Scholar 

  22. Ghosh, A., Collie, S.R.: Keratinous materials as novel absorbent systems for toxic pollutants. Def. Sci. J. 64(3), 209–221 (2014)

    Article  Google Scholar 

  23. Zhou, L.-T., Yang, G., Yang, X.-X., Cao, Z.-J., Zhou, M.-H.: Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ. Sci. Pollut. Res. 21(8), 5730–5736 (2014)

    Article  Google Scholar 

  24. Lin, H., Sritham, E., Lim, S., Cui, Y., Gunasekaran, S.: Synthesis and characterization of pH- and salt-sensitive hydrogel based on chemically modified poultry feather protein isolate. J. Appl. Polym. Sci. 116(1), 602–609 (2010)

    Article  Google Scholar 

  25. Ozaki, Y., Takagi, Y., Mori, H., Hara, M.: Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. Mater. Sci. Eng. C 42, 146–154 (2014)

    Article  Google Scholar 

  26. Calvo, P., Nelson, L., Kloepper, J.: Agricultural uses of plant biostimulants. Plant Soil 383(1–2), 3–41 (2014)

    Article  Google Scholar 

  27. Arai, K.M., Takahashi, R., Yokote, Y., Akahane, K.: Amino-acid sequence of feather keratin from fowl. Eur. J. Biochem. 132(3), 501–507 (1983)

    Article  Google Scholar 

  28. Erra, P., Gómez, N., Dolcet, L.M., Juliá, M.R., Lewis, D.M., Willoughby, J.H.: FTIR analysis to study chemical changes in wool following a sulfitolysis treatment1. Text. Res. J. 67(6), 397–401 (1997)

    Article  Google Scholar 

  29. Woodin, A.M.: Structure and composition of soluble feather keratin. Biochem. J. 63(4), 576–581 (1956)

    Article  Google Scholar 

  30. Liu, P., Xu, H., Mi, X., Xu, L., Yang, Y.: Oxidized sucrose: a potent and biocompatible crosslinker for three-dimensional fibrous protein scaffolds. Macromol. Mater. Eng. 300(4), 414–422 (2015)

    Article  Google Scholar 

  31. Lee, L.D., Baden, H.P.: Organisation of the polypeptide chains in mammalian keratin. Nature 264(5584), 377–379 (1976)

    Article  Google Scholar 

  32. Gurd, F.R.: Carboxymethylation. Methods Enzymol. 11, 532–541 (1967)

    Article  Google Scholar 

  33. Schrooyen, P.M.M., Dijkstra, P.J., Oberthur, R.C., Bantjes, A., Feijen, J.: Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J. Agric. Food Chem. 48(9), 4326–4334 (2000)

    Article  Google Scholar 

  34. Park, T.G.: Degradation of poly(d,l-lactic acid) microspheres: effect of molecular weight. J. Control. Release. 30(2), 161–173 (1994)

    Article  Google Scholar 

  35. Liardon, R., Ledermann, S.: Racemization kinetics of free and protein-bound amino acids under moderate alkaline treatment. J. Agric. Food Chem. 34(3), 557–565 (1986)

    Article  Google Scholar 

  36. Bardajee, G., Pourjavadi, A., Soleyman, R.: Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J. Polym. Res. 18(3), 337–346 (2011)

    Article  Google Scholar 

  37. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)

    Article  Google Scholar 

  38. Tsuda, Y., Nomura, Y.: Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim. Sci. J. 85(2), 180–185 (2014)

    Article  Google Scholar 

  39. Pourjavadi, A., Ayyari, M., Amini-Fazl, M.S.: Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J. 44(4), 1209–1216 (2008)

    Article  Google Scholar 

  40. Zhang, B., Cui, Y., Yin, G., Li, X., Liao, L., Cai, X.: Synthesis and swelling properties of protein-poly(acrylic acid-co-acrylamide) superabsorbent composite. Polym. Compos. 32(5), 683–691 (2011)

    Article  Google Scholar 

  41. Bagheri Marandi, G., Mahdavinia, G., Ghafary, S.: Swelling behavior of novel protein-based superabsorbent nanocomposite. J. Appl. Polym. Sci. 120(2), 1170–1179 (2011)

    Article  Google Scholar 

  42. Silverstein, R., Webster, F.: Spectrometric identification of organic compounds. Wiley, New York (2006)

    Google Scholar 

  43. Iqbal, H.M.N., Kyazze, G., Tron, T., Keshavarz, T.: Laccase-assisted approach to graft multifunctional materials of interest: keratin-EC based novel composites and their characterisation. Macromol. Mater. Eng. 300, 712–720 (2015)

    Article  Google Scholar 

  44. Maurer, J.J., Eustace, D.J., Ratcliffe, C.T.: Thermal characterization of poly(acrylic acid). Macromolecules 20(1), 196–202 (1987)

    Article  Google Scholar 

  45. Stutz, H., Illers, K.H., Mertes, J.: A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers. J. Polym. Sci. Part B: Polym. Phys. 28(9), 1483–1498 (1990)

    Article  Google Scholar 

  46. Kabiri, K., Zohuriaan-Mehr, M.J.: Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol. Mater. Eng. 289(7), 653–661 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fonds de recherche du Québec-Nature et technologies (FRQNT). We gratefully acknowledge the use of laboratory equipment of Dr. Valérie Orsat and Dr. Michael Ngadi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Josée Dumont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wattie, B., Dumont, MJ. & Lefsrud, M. Synthesis and Properties of Feather Keratin-Based Superabsorbent Hydrogels. Waste Biomass Valor 9, 391–400 (2018). https://doi.org/10.1007/s12649-016-9773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9773-0

Keywords

Navigation