Skip to main content
Log in

Mild Photocatalysed and Catalysed Green Oxidation of Lignin: A Useful Pathway to Low-Molecular-Weight Derivatives

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Two commercial Ca2+ and NH4 + lignin derivatives were catalytically oxidised and photooxidised both aerobically and in presence of H2O2 (Fenton system), under green conditions (water solution, 20°C, 1 atm), to obtain fractions with reduced degrees of polymerisation. Analyses of the oxidised solutions were carried out using NMR, MS and UV spectrometry. The catalytic and photocatalytic systems used showed satisfactory conservation of the organic material, except for the Fenton system. Lignins showed some mineralisation when irradiated in the presence of H5[PMo10V2O40] × H2O (POM-1), K5[Ru(H2O)PW11O39] (POM-2), K4[SiW12O40]·8H2O (POM-3) and TiO2. When the POMs were used as thermal catalysts, POM-3 was almost inactive, while the reactivities of POM-1 and POM-2 under both thermal and photochemical conditions were comparable, revealing little effect of irradiation on the reaction mechanism. The best compromise appears to be the TiO2 photosystem, which shows low carbon consumption, good preservation of aromatic rings, and greatly reduced mineralisation. Alternatively, POM-1 can be used, and particularly under thermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anastas, P.T., Warner, J.C.: Green chemistry. Theory and practice. Oxford University Press, New York (2000)

    Google Scholar 

  2. Detroy, R.W., Julian, G.S.T.: Biomass conversion: fermentation chemicals and fuels. Crit. Rev. Microbiol. 10, 203–228 (1982)

    Article  Google Scholar 

  3. Dagley, S.: New perspectives in aromatic catabolism. In: Leisinger, T., Cook, A.M., Hütter, R., Nüesch, J. (eds.) Degradation of xenobiotics and recalcitrant compounds, pp. 181–186. Academic Press, Inc, New York (1981)

    Google Scholar 

  4. Adler, E.: Lignin chemistry—past, present and future. Wood Sci. Technol. 11, 169–218 (1977)

    Article  Google Scholar 

  5. Reale, S., Di Tullio, A., Spreti, N., De Angelis, F.: Mass spectrometry in the biosynthetic and structural investigations of lignin’s. Mass Spectrom. Rev. 23, 87–126 (2004)

    Article  Google Scholar 

  6. Reale, S., Attanasio, F., Spreti, N., De Angelis, F.: Lignin chemistry: biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment. Chem. Eur. J. 16, 6077–6087 (2010)

    Google Scholar 

  7. da Costa Sousa, L., Chundawat, S.P.S., Balan, V., Dale, B.E.: ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotech 20, 339–347 (2009)

    Article  Google Scholar 

  8. Eggleston, G.: Future sustainability of the sugar and sugar-ethanol industries, in ACS symposium series. Am. Chem. Soc. 1058, 1–19 (2010)

    Google Scholar 

  9. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311, 484–489 (2006)

    Article  Google Scholar 

  10. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Thechnol 83, 1–11 (2002)

    Article  Google Scholar 

  11. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel. Bioprod. Bior. 2, 26–40 (2008)

    Article  Google Scholar 

  12. Phillips, M., Goss, M.J.: The hydrolysis of lignin with 12% hydrochloric acid. J. Am. Chem. Soc. 54, 3374–3377 (1932)

    Article  Google Scholar 

  13. Goldstein, I.S.: Perspectives on production of phenols and phenolic acids from lignin and bark. Appl. Polym. Symp. 28, 259–267 (1975)

    Google Scholar 

  14. Collinson, S.R., Thielemans, W.: The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Chem. Commun. 254, 1854–1870 (2010)

    Google Scholar 

  15. Li, J., Gellerstedt, G.: Improved lignin properties and reactivity by modifications in the auto hydrolysis process of aspen wood. Ind. Crops Prod. 27, 175–181 (2008)

    Article  Google Scholar 

  16. Schultz, T.P., Chen, C.L., Goldstein, I.S.: Attempted depolymerization of HCl lignin by catalytic hydrogenolysis. Wood Chem. Technol. 2, 33–46 (1982)

    Article  Google Scholar 

  17. Kakemoto, G., Sagara, H., Suzuki, N., Kachi, S.: Method of manufacturing phenols from lignin. US Patent, 4900873 (1990)

  18. Sales, F.G., Maranhao, L.C.A., Lima Filho, N.M., Abreu, C.A.M.: Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind. Eng. Chem. Res. 45, 6627–6631 (2006)

    Article  Google Scholar 

  19. Ko, J.J., Shimizu, Y., Ikeda, K., Kim, S.K., Park, C.H., Matsui, S.: Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products. Bioresour. Technol. 100, 1622–1627 (2009)

    Article  Google Scholar 

  20. Arora, D.S., Sharma, R.K.: Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol. 160, 1760–1788 (2010)

    Article  Google Scholar 

  21. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552 (2010)

    Article  Google Scholar 

  22. Gaspar, A.R., Gamelas, J.A.F., Evtuguin, D.V., Neto, C.P.: Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem. 9, 717–730 (2007)

    Article  Google Scholar 

  23. Portjanskaja, E., Stepanova, K., Klauson, D., Preis, S.: The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids. Catal. Today 144, 26–30 (2009)

    Article  Google Scholar 

  24. Makhotkina, O.A., Preis, S.V., Parkhomchuk, E.V.: Water delignification by advanced oxidation processes: homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions. Appl. Catal. B Environ. 84, 821–826 (2008)

    Article  Google Scholar 

  25. Weinstock, I.A., Atalla, R.H., Reiner, R.S., Moen, M.A., Hammel, K.E., Houtman, C.J., Hill, C.L., Harrup, M.K.: A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalate as catalysts for multiple processes. J. Mol. Catal. A Chem. 116, 59–84 (1997)

    Article  Google Scholar 

  26. Kim, Y.S., Chang, H., Kadla, J.F.: Polyoxometalate (POM) oxidation of milled wood lignin (MWL). J. Wood Chem. Technol. 27, 225–241 (2007)

    Article  Google Scholar 

  27. Yokoyama, T., Chang, H., Reiner, R.S., Atalla, R.H., Weinstock, I.A., Kadla, J.F.: Polyoxometalate oxidation of non-phenolic lignin subunits in water: effect of substrate structure on reaction kinetics. Holzforschung 58, 116–121 (2004)

    Article  Google Scholar 

  28. Bujanovic, B., Reiner, R.S., Ralph, S.A., Atalla, R.H.: Polyoxometalate delignification of Birch Kraft pulp and effect on residual lignin. J. Wood Chem. Technol. 31, 121–141 (2011)

    Article  Google Scholar 

  29. Gaspar, A.R., Evtuguin, D.V., Neto, C.P.: Polyoxometalate-catalyzed oxygen delignification of Kraft pulp: a pilot-plant experience. Ind. Eng. Chem. Res. 43, 7754–7761 (2004)

    Article  Google Scholar 

  30. Sun, N., Jiang, X., Maxim, M.L., Metlen, A., Rogers, R.D.: Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. Chem. Sus. Chem. 4, 65–73 (2011)

    Google Scholar 

  31. Voitl, T., von Rohr, P.R.: Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. Chem. Sus. Chem. 1, 763–769 (2008)

    Google Scholar 

  32. Tsigdinos, G.A., Hallada, C.J.: Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg. Chem. 7, 437–441 (1968)

    Article  Google Scholar 

  33. Bressan, M., Forti, L., Ghelfi, F., Morvillo, A.: Ruthenium(II)-catalyzed oxidation of alcohols by persulfate. J. Mol. Catal. 79, 85–93 (1993)

    Article  Google Scholar 

  34. Pope, M.T., Varga Jr., G.M.: Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 5, 1249–1254 (1966)

    Article  Google Scholar 

  35. Brevard, C., Schimpf, R., Tourne, G., Tourne, C.M.: Tungsten-183 NMR: a complete and unequivocal assignment of the tungsten–tungsten connectivities in heteropolytungstates via two dimensional 183W NMR techniques. J. Am. Chem. Soc. 105, 7059–7063 (1983)

    Article  Google Scholar 

  36. Evans, I.P., Spencer, A., Wilkinson, G.: Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes. J. Chem. Soc. Dalton Trans. 204–209 (1973)

  37. Chen, C., Zhao, W., Lei, P., Zhao, J., Serpone, N.: Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chem. Eur. J. 10, 1956–1965 (2004)

    Article  Google Scholar 

  38. Pettersson, L., Andersson, I., Selling, A., Grate, J.H.: Multicomponent polyanions. 46. Characterization of the isomeric Keggin decamolybdodivanadophosphate ions in aqueous solution by 31P and 51V NMR. Inorg. Chem. 33, 982–993 (1994)

    Article  Google Scholar 

  39. Cho, D.W., Parthasarathi, R., Pimentel, A.S., Maestas, G.D., Park, H.J., Yoon, U.C., Dunaway Mariano, D., Gnanakaran, S., Langan, P., Mariano, P.S.: Nature and kinetic analysis of carbon–carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds. J. Org. Chem. 75, 6549–6552 (2010)

    Google Scholar 

  40. Cho, D.W., Latham, J.A., Park, H.J., Yoon, U.C., Langan, P., Dunaway Mariano, D., Mariano, P.S.: Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon–carbon bond fragmentation reactions of tetrameric lignin model compounds. J. Org. Chem. 76, 2840–2852 (2011)

    Google Scholar 

  41. Tanaka, K., Calanag, R.C.R., Hisanaga, T.: Photocatalyzed degradation of lignin on TiO2. J. Mol. Catal. A Chem. 138, 287–294 (1999)

    Article  Google Scholar 

  42. Spiccia, L., Deacon, G.B., Kepert, C.M.: Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands. Coord. Chem. Rev. 248, 1329–1341 (2004)

    Article  Google Scholar 

  43. Bressan, M., d’Alessandro, N., Liberatore, L., Morvillo, A.: Ruthenium catalyzed oxidative dehalogenation of organics. Coord. Chem. Rev. 185–186, 385–402 (1999)

    Article  Google Scholar 

  44. Arslan-Alaton, I.: Homogenous photocatalytic degradation of a disperse dye and its dye bath analogue by silicadodecatungstic acid. Dyes Pigment 60, 167–176 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the “Consorzio di Ricerca per l’Innovazione Tecnologica, la Qualità e la Sicurezza degli Alimenti S.C.R.L”. (DM MIUR n. 28497/2006), and to the “G. D’Annunzio” University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola d’Alessandro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonucci, L., Coccia, F., Bressan, M. et al. Mild Photocatalysed and Catalysed Green Oxidation of Lignin: A Useful Pathway to Low-Molecular-Weight Derivatives. Waste Biomass Valor 3, 165–174 (2012). https://doi.org/10.1007/s12649-011-9102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9102-6

Keywords

Navigation