Dynamics of Bianchi type-\(\hbox {VI}_{0}\) anisotropic dark energy cosmological model with massive scalar field in Lyra manifold

Abstract

The paper deals with the study of anisotropic dark energy and massive scalar field in the evolution of spatially homogeneous Bianchi type-\(\hbox {VI}_{0}\) cosmological model in the framework of Lyra geometry. Exact solution of Einstein’s field equations is obtained by using two supplementary physical and mathematical conditions which correspond to an anisotropic dark energy cosmological model for all time. Some physical and dynamical behaviors of the model are discussed. The model may be physically significant for discussion on early stages of evolution of the universe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. [1]

    A G Riess et al. Astron. J. 116 1009 (1998)

    ADS  Article  Google Scholar 

  2. [2]

    S Perlmutter et al. Astrophys. J. 517 565 (1999)

    ADS  Article  Google Scholar 

  3. [3]

    D N Spergel et al. Astrophys. J. Suppl. 148 175 (2003)

    ADS  Article  Google Scholar 

  4. [4]

    D N Spergel et al. Astrophys. J. Suppl. 170 377 (2007)

    ADS  Article  Google Scholar 

  5. [5]

    K Bamba et al. Astrophys. Space Sci. 342 155 (2012)

    ADS  Article  Google Scholar 

  6. [6]

    T Koivisto and D F Mota Astrophys. J. 679 1 (2008)

    ADS  Article  Google Scholar 

  7. [7]

    K S Adhav et al. Astrophys. Space Sci. 332 497 (2011)

    ADS  Article  Google Scholar 

  8. [8]

    A Pradhan Res. Astro. Astrophys. 13 139 (2013)

    ADS  Article  Google Scholar 

  9. [9]

    G C Samanta Int. J. Theor. Phys. 52 3442 (2013)

    Article  Google Scholar 

  10. [10]

    G Lyra Math. Z. 54, 52 (1951)

    MathSciNet  Article  Google Scholar 

  11. [11]

    W D Halford Aust. J. Phys. 23, 863 (1970)

    ADS  Article  Google Scholar 

  12. [12]

    J K Singh Astrophys. Space Sci. 314, 361 (2008)

    ADS  Article  Google Scholar 

  13. [13]

    J K Singh Astrophys. Space Sci. 317, 39 (2008)

    ADS  Article  Google Scholar 

  14. [14]

    J K Singh and N S Sharma Afr. Rev. Phys. 8, 397 (2013)

    Google Scholar 

  15. [15]

    J K Singh and S Ram Nuovo Cim. B 112, 1157 (1997)

    ADS  Google Scholar 

  16. [16]

    S Ram, M K Verma and M Zeyauddin Mod. Phys. Lett. A 24, 1847 (2009)

    ADS  Article  Google Scholar 

  17. [17]

    O Bergmann and R Leipnik Phys. Rev. 107 1157 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    R L Brahmchary Prog. Theor. Phys 23 749(1960)

    ADS  Article  Google Scholar 

  19. [19]

    R Penney Phys. Rev. 174 1578 (1968)

    ADS  Article  Google Scholar 

  20. [20]

    R Gautreau Nuovo Cimomto B 62 360 (1969)

    ADS  Article  Google Scholar 

  21. [21]

    A Das Prog. Roy. Soc. A 267 1 (1962)

    ADS  Google Scholar 

  22. [22]

    G Stephension Prog. Camb. Phil. Soc. 58 521 (1972)

    ADS  Article  Google Scholar 

  23. [23]

    T Singh Gen. Relat. Gravit. 5 657 (1975)

    ADS  Article  Google Scholar 

  24. [24]

    L K Patel Tensor(N. S.) 29 237 (1975)

    MathSciNet  Google Scholar 

  25. [25]

    D R K Reddy Astrophys. Space Sci. 140 161 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A Pradhan et al. Int. J. Pure Appl. Maths. 32 789 (2001)

    Google Scholar 

  27. [27]

    G Mohanty and B D Pradhan Int. J. Theor. Phys. 31 151 (1992)

    Article  Google Scholar 

  28. [28]

    J K Singh and Shri Ram Astrophys. Space Sci. 236 277 (1996)

    ADS  Article  Google Scholar 

  29. [29]

    J K Singh Int. J. Mod. Phys. A 23 4925 (2008)

    ADS  Article  Google Scholar 

  30. [30]

    J K Singh and S Rani Int. J. Theor. Phys. 54 545 (2015)

    Article  Google Scholar 

  31. [31]

    D R K Reddy et al. Can. J. Phys. 97 932 (2019)

    ADS  Article  Google Scholar 

  32. [32]

    Y Aditya et al. Astrophys. Space Sci. 364 190 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    D Raju et al. Astrophys. Space Sci. 365 45 (2020)

    ADS  Article  Google Scholar 

  34. [34]

    K S Thorne Astrophys. Space Sci. 148, 51 (1967)

    Google Scholar 

  35. [35]

    R Kantowski and R K Sachs J Math Phys. 7, 443 (1966)

    ADS  Article  Google Scholar 

  36. [36]

    J Kristion and R K Sachs Astrophys. J. 143, 379 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    C B Collins and S W Hawking Astrophys. J. 180, 317 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    S R Roy and S K Banerjee Class. Quant. Gravit. 14, 2845 (1997)

    ADS  Article  Google Scholar 

  39. [39]

    R Bali and G Singh Astrophys. Space Sci. 134, 47 (1987)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shri Ram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ram, S., Verma, M.K. Dynamics of Bianchi type-\(\hbox {VI}_{0}\) anisotropic dark energy cosmological model with massive scalar field in Lyra manifold. Indian J Phys (2021). https://doi.org/10.1007/s12648-021-02016-1

Download citation

Keywords

  • Cosmology
  • Bianchi type-\(\hbox {VI}_{0}\) model
  • Dark energy
  • Massive scalar field