Phenomenon of stochastic resonance for an underdamped monostable system with multiplicative and additive noise

Abstract

The stochastic resonance (SR) phenomenon for an underdamped monostable system with multiplicative and additive noise is investigated. The expression for the stationary probability density is obtained under the condition of the detailed balance and weak noise. The signal-to-noise ratio (SNR) for the monostable system is derived based on two-state theory. The result shows that the SR phenomenon can be observed when the SNR varies with the intensities of the multiplicative and additive white noise, as well as varies with the amplitude of the additive dichotomous noise. One resonance peak can be found when the SNR changes with the damping coefficient and with other system parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. [1]

    J H Yang, M A F Sanjuan, H G Liu and H Zhu Nonlinear Dyn. 87 1721 (2017)

    Article  Google Scholar 

  2. [2]

    M J He, W Xu, Z K Sun and W T Jia Nonlinear Dyn. 88 1163 (2017)

    Article  Google Scholar 

  3. [3]

    B C Zhou and D D Lin Chin. J. Phys. 55 1078 (2017)

    Article  Google Scholar 

  4. [4]

    J Liu and Y G Wang Physica A 493 359 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J Liu, J Cao, Y G Wang and B Hu Physica A 517 321 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    L F Lin, G X Z Yuan, H Q Wang and J Y Xie Commun. Nonlinear Sci. Numer. Simulat. 66 109 (2019)

    ADS  Article  Google Scholar 

  7. [7]

    H Tan, X S Liang, Z Y Wu, Y K Wu and H C Tan Chin. J. Phys. 57 362 (2019)

    Article  Google Scholar 

  8. [8]

    S Zhang, Y L Ya, Z C Zhu, J H Yang and G Shen Eur. Phys. J. Plus 134 115 (2019)

    ADS  Article  Google Scholar 

  9. [9]

    L Xu, T Yu, L Lai, D Z Zhao, C Deng and L Zhang Commun. Nonlinear Sci. Numer. Simulat. 83 105133 (2020)

    Article  Google Scholar 

  10. [10]

    P M Shi, H F Xia and D Y Han R R Fu and D Z Yuan Chaos Solitons Fractals 108 8 (2018)

    ADS  Article  Google Scholar 

  11. [11]

    G H Cheng, W D Liu, R Gui and Y G Yao Chaos Solitons Fractals 131 109514 (2020)

    Article  Google Scholar 

  12. [12]

    A P Zamani, N Novikov and B Gutkin Commun. Nonlinear Sci. Numer. Simulat. 82 105024 (2020)

    Article  Google Scholar 

  13. [13]

    Y M Lei, H H Bi and H Q Zhang Chaos 28 073104 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    P Zandiyeh, J C Küpper, N G H Mohtadi, P Goldsmith and J L Ronsky J. Biomech. 12 018 (2018)

    Google Scholar 

  15. [15]

    R W Zhou, G Y Zhong and J C Li, Y X Li and F He Modern Phys Lett. B 5 1850290 (2018)

    Article  Google Scholar 

  16. [16]

    R Yamapi, R M Yonkeu, G Filatrella and C Tchawoua Commun. Nonlinear Sci. Numer. Simulat. 62 1 (2018)

    ADS  Article  Google Scholar 

  17. [17]

    R F Liu, W J Ma, J K Zeng and C H Zeng Physica A 517 563 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    X J Sun and G F Li Physica A 513 653 (2019)

    Article  Google Scholar 

  19. [19]

    Y F Yang, C J Wang, K L Yang, Y Q Yang and Y C Zheng Physica A 514 580 (2019)

    ADS  Article  Google Scholar 

  20. [20]

    H Kim, W C Tai, J Parker and L Zuo Mech. Syst. Signal Process. 122 769 (2019)

    ADS  Article  Google Scholar 

  21. [21]

    I S Sawkmie and M C Mahato Commun. Nonlinear Sci. Numer. Simulat. 78 104859 (2019)

    Article  Google Scholar 

  22. [22]

    H T Yu, K Li, X M Guo, J Wang, B Deng and C Liu IEEE Trans. Fuzzy Syst. 28 5 (2020)

    Article  Google Scholar 

  23. [23]

    L L Duan, F B Duan, F Chapeau-Blondeau and D Abbott Phys. Lett. A 384 126143 (2020)

    MathSciNet  Article  Google Scholar 

  24. [24]

    Y Dong, S H Wen, X B Hu and J C Li Physica A 540 123098 (2020)

    Article  Google Scholar 

  25. [25]

    C Y Bai Physica A 507 304 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    K K Wang, H Ye, Y J Wang and S H Li Chin. J. Phys. 56 2204 (2018)

    Article  Google Scholar 

  27. [27]

    K K Wang, D C Zong, Y J Wang and P X Wang Physica A 540 122861 (2020)

    MathSciNet  Article  Google Scholar 

  28. [28]

    Z H Lai, J S Liu, H T Zhang, C L Zhang, J W Zhang and D Z Duan Nonlinear Dyn. 96 2069 (2019)

    Article  Google Scholar 

  29. [29]

    Y X Zhang, Y F Jin and P F Xu Chaos 29 023127 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    Y J Liu, F Z Wang, L Liu and Y M Zhu Eur. Phys. J. B 92 168 (2019)

    ADS  Article  Google Scholar 

  31. [31]

    Y X Zhang, Y F Jin, P F Xu and S M Xiao Nonlinear Dyn. 99 879 (2020)

    Article  Google Scholar 

  32. [32]

    P M Shi, W Y Zhang, D Y Han and M D Li Chaos Solitons Fractals 128 155 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    P F Xu and Y F Jin Appl. Math. Model. 77 408 (2020)

    MathSciNet  Article  Google Scholar 

  34. [34]

    D Orlando, P B Goncalves, G Rega and S Lenci Int. J. Non-Linear Mech. 109 140 (2019)

    ADS  Article  Google Scholar 

  35. [35]

    S B Jiao, X X Qiao, S Lei and W Jiang Chin. J. Phys. 59 138 (2019)

    Article  Google Scholar 

  36. [36]

    G Volpe, S Perrone, J M Rubi and D Petrov Phys. Rev. E 77 051107 (2008)

    ADS  Article  Google Scholar 

  37. [37]

    F Guo Physica A 388 2315 (2009)

    ADS  Article  Google Scholar 

  38. [38]

    L F He, X C Zhou, G Zhang and T Q Zhang Phys. Lett. A 382 2431 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    L Yu, H Q Wang, L F Lin and S C Zhong Nonlinear Dyn. 95 3127 (2019)

    Article  Google Scholar 

  40. [40]

    L Liu, F Z Wang and Y J Liu Eur. Phys. J. B 92 11 (2019)

    ADS  Article  Google Scholar 

  41. [41]

    J M Li, H Wang, J F Zhang, X F Yao and Y G Zhang ISA Trans. 04 031 (2019)

    Article  Google Scholar 

  42. [42]

    Y F Guo, Y J Shen and J G Tan Mod. Phys. Lett. B 29 1550034 (2015)

    ADS  Google Scholar 

  43. [43]

    Y F Jin Chin. Phys. B 27 050501 (2018)

    ADS  Article  Google Scholar 

  44. [44]

    P F Xu, Y F Jin and Y X Zhang Appl. Math. Comput. 346 352 (2019)

    MathSciNet  Article  Google Scholar 

  45. [45]

    Y Xu, J Wu, H Q Zhang and S J Ma Nonlinear Dyn 70 531 (2012)

    Article  Google Scholar 

  46. [46]

    F Guo, C Y Zhu, X F Cheng and H Li Physica A 459 86 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    G Zhang, J B Shi and T Q Zhang Physica A 512 230 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    T Yu, L Zhang, S C Zhong and L Lai Nonlinear Dyn. 96 1735 (2019)

    Article  Google Scholar 

  49. [49]

    F Guo, X D Luo, S F Li and Y R Zhou Chin. Phys. B 19 080504 (2010)

    ADS  Article  Google Scholar 

  50. [50]

    M L Yao, W Xu and L J Ning Nonlinear Dyn. 67 329 (2012)

    ADS  Article  Google Scholar 

  51. [51]

    C W Gardiner Handbook of Stochastic Methods, 2nd edn. (Berlin: Springer) (1985)

    Google Scholar 

  52. [52]

    R Rozenfeld, A Neiman and L Schimansky-Geier Phys. Rev. E 62 R3031 (2000)

    ADS  Article  Google Scholar 

  53. [53]

    W Q Zhu and G Q Cai Introduction to Stochastic Dynamics. (Beijing: Science Press) (2017)

    Google Scholar 

  54. [54]

    J Freund, A Neiman and L Schimansky-Geier Europhys. Lett. 50 8 (2000)

    ADS  Article  Google Scholar 

  55. [55]

    F Guo, X F Cheng and W Cao Chin. J. Phys. 49 1224 (2011)

    Google Scholar 

Download references

Funding

Funding was provided by the National Natural Science Foundation of China (No. 61771411).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng Guo or Xueyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhu, C., Wang, S. et al. Phenomenon of stochastic resonance for an underdamped monostable system with multiplicative and additive noise. Indian J Phys (2021). https://doi.org/10.1007/s12648-021-02010-7

Download citation

Keywords

  • Stochastic resonance
  • Underdamped monostable system
  • Multiplicative noise
  • Dichotomous noise