Enhancement of the optical absorption in photonic crystal waveguides

Abstract

In this paper, we present two new photonic crystal designs, giving the free space of the slabs around the cavities as well as the possibility of further absorption for the active layer of quantum dots. In the second design, the radius of the cavities gradually increases and the distance between them becomes smaller. Here, the removal of 4 small holes and replacing them with larger cavities are employed. The band structure is also presented because the presence of bands can be related to absorptions due to the defect structure. Because of the presence of bands that delay the movement of the wavelength of light, it is a plan for high absorption of its defect structure. The dielectric function of the quantum dots with a GaAs slab is calculated from the Maxwell–Garnet model and then replaced in Maxwell equations. The phenomena, namely slow light in the photonic crystal, cause increasing characteristics of optical structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    S G Johnson and J D Joannopoulos Introduction to Photonic Crystals: Bloch's Theorem, Band Diagrams, and Gaps (MIT) (2003)

  2. [2]

    E A R Ortuno J. Appl. Phys. 106 124313 (2009)

  3. [3]

    M D B Chalton, G J Parker and S W Roberts Mater Sci. Eng. B 49 155 (1997)

    Article  Google Scholar 

  4. [4]

    T Baba IEEE J. Quantum. Electron. 3 808 (1997)

  5. [5]

    E Istrate, E H Sargent IEEE J. Quant. Electron. 41 461 (2005)

  6. [6]

    T W E C Genet Nature 445 39 (2007)

  7. [7]

    S khorasani Introduction to the optics of photonic crystals, Sharif University of Technology Publications, Tehran, Iran, p 280 (in persian) (1386)

  8. [8]

    M A Mansouri-Birjandi, M K Moravvej-Farshi, and A Rostami Appl Opt. 47 5041 (2008)

  9. [9]

    M Y Mahmoud, G Bassou, A Taalbi and Z M Chekroun Opt. Commun. 285 368 (2012)

    ADS  Article  Google Scholar 

  10. [10]

    A Ghaffari, M Djavid and M S Abrishamian Opt. Commun. 281 5929 (2008)

    ADS  Article  Google Scholar 

  11. [11]

    S John Phys. Rev. Lett. 58 2486 (1987)

  12. [12]

    E Yablonovitch Phys. Rev. Lett. 58 2059 (1987)

  13. [13]

    V Reboud et al Appl. Phys. Lett. 91 151101 (2007)

  14. [14]

    I Mikulskas et al Appl. Surf. Sci.186 599 (2002)

  15. [15]

    Y J Liu and X W Sun Appl. Phys. Lett. 89 171101 (2006)

    ADS  Article  Google Scholar 

  16. [16]

    J M Lourtioz, H Benisty, V Berger, JM Gerard, D Maystre and A Tchelnokov Metallic Photonic Crystals: Towards Nanoscale Photonic Devices (Springer) (2008)

  17. [17]

    B Reinhard, G Torosyan and R Beigang Appl. Phys. Lett. 92 201107 (2008)

    ADS  Article  Google Scholar 

  18. [18]

    T Ochiai and J Sanchez-Dehesa Phys Rev. B 65 245111 (2002)

    ADS  Article  Google Scholar 

  19. [19]

    V Kuzmiak, A A Maradudin and F Epinemin Phys. Rev. B 50 16835 (1994)

    ADS  Article  Google Scholar 

  20. [20]

    M Bayindir, E Cubukcu, I Bulu, T Tut and E Ozbay Phys. Rev. B 64 195113 (2001)

    ADS  Article  Google Scholar 

  21. [21]

    G Guida, A de Lustrac and A Priou Progress In Electromagnetics Research 41 1 (2003)

    Article  Google Scholar 

  22. [22]

    F Godot, A de Lustra, J M Lourtioza, T Brillat, A Ammouche and E Akmansoy J. of App. Phys. 85 8499 (1999)

    ADS  Article  Google Scholar 

  23. [23]

    K L Low, M Z M Jafri, and S A Khan Progress in Electromagnetics Research 12 67 (2010)

  24. [24]

    X Xu, Y Xi, D Han, X Liu and J Zi Appl. Phys. Lett. 86 091112 (2005)

    ADS  Article  Google Scholar 

  25. [25]

    J B Pendry, A J Holden, W J Stewart and I Youngs Phys. Rev. Lett. 76 4773 (1996)

    ADS  Article  Google Scholar 

  26. [26]

    J D Joannopoulos, S G Johnson, J N Winn, R D Meade Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University) (2008)

  27. [27]

    M Soltani, A Haque, B Momeni and A Adibi Proceeding of the SPIE 5000 257 (2003)

    ADS  Article  Google Scholar 

  28. [28]

    M. Okano and S. Kako S Noda Phys. Rev. B 68 235110 (2003)

    ADS  Article  Google Scholar 

  29. [29]

    S Krishna et IEEE LEOS Annual Meeting Conference Proceedings, 22–28 (2005)

  30. [30]

    B Toshihiko and D Mori J. Phys. D: Appl. Phys. 40 2659 (2007)

    Article  Google Scholar 

  31. [31]

    J M Lourtioz, H Benisty, V Berger JM Gerard, D Maystre, A Tchelnokov Photonic Crystals Towards Nanoscale Photonic Devices, (1997)

  32. [32]

    H KVlotsch Optical Scinces, Springer (2004)

  33. [33]

    J M Brosi Slow light photonic crystal devices for high speed optical signal processing, (2008)

  34. [34]

    M Sugawara Self-Assembled in GaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Academic Press, Vol. 60, 1st edn (1999)

  35. [35]

    C Nayak, C H Costa, and K V Phani Kumar IEEE Transactions on Plasma Science 48 2095 (2020)

  36. [36]

    C Nayak, A Aghajamali and A Saha Superlattice and Microstructures 111 248 (2017)

    ADS  Article  Google Scholar 

  37. [37]

    C Nayak, C H Costa and A Aghajamali IEEE Transactions on Plasma Science 47 1726 (2019)

    ADS  Article  Google Scholar 

  38. [38]

    C Nayak, C G Bezerra and C H Costa Optical Materials 104 109838 (2020)

    Article  Google Scholar 

  39. [39]

    C Nayak, A Aghajamali and F Scotognella A Optical Material 72 25 (2017)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Solaimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, P., Solaimani, M. Enhancement of the optical absorption in photonic crystal waveguides. Indian J Phys (2021). https://doi.org/10.1007/s12648-020-01990-2

Download citation

Keywords

  • Photonic crystal
  • Dielectric function
  • Maxwell–Garnet model
  • Defect
  • Slow light
  • Absorption