Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations

Abstract

Thermal transport in classical fluids is analyzed through higher-order generalized hydrodynamics (or mesoscopic hydrothermodynamics) depending on the evolution of the energy density and its fluxes of all orders. It is derived by a kinetic theory based on the nonequilibrium statistical ensemble formalism. A general system of coupled evolution equations is derived. Maxwell times, which are of significance to determine the character of the motion, are derived. They also have an important role in the choice of the contraction of description (limitation in the number of fluxes to be retained) in the studies on hydrodynamic motions. In a description of order 1, an analysis of the technological process of thermal prototyping is presented.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. [1]

    C G Rodrigues, C A B Silva, A R Vasconcellos, J G Ramos and R Luzzi Braz. J. Phys. 40 63 (2010)

    ADS  Article  Google Scholar 

  2. [2]

    Y Guo and M Wang Phys. Rep. 595 1 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    G Chen Annu. Rev. Heat Transfer 17 1 (2014)

    Article  Google Scholar 

  4. [4]

    R A Guyer and J A Krumhansl Phys. Rev. 148 766 (1966)

    ADS  Article  Google Scholar 

  5. [5]

    F X Alvarez, D Jolu and A Sellitto J. Appl. Phys. 105 014317 (2009)

    ADS  Article  Google Scholar 

  6. [6]

    D Y Tzou Int. J. Heat Mass Transfer 38 3231 (1995)

    Article  Google Scholar 

  7. [7]

    D Y Tzou J. Heat Transfer 117 8 (1995)

    Article  Google Scholar 

  8. [8]

    G Chen Phys. Rev. Lett. 86 2297 (2001)

    ADS  Article  Google Scholar 

  9. [9]

    G Chen J. Heat Transfer 124 320 (2002)

    Article  Google Scholar 

  10. [10]

    Z-Y Guo J. Eng. Thermophys. 27 631 (2006)

    Google Scholar 

  11. [11]

    B-Y Cao and Z-Y Guo J. Appl. Phys. 102 053503 (2007)

    ADS  Article  Google Scholar 

  12. [12]

    A J H Mcgaughey and M Kaviany Adv. Heat Transfer 39 169 (2006)

    Article  Google Scholar 

  13. [13]

    R Kubo Rep. Progr. Phys. 29 255 (1966)

    ADS  Article  Google Scholar 

  14. [14]

    D A Broido, M Malorny and G Birner Appl. Phys. Lett. 91 231922 (2007)

    ADS  Article  Google Scholar 

  15. [15]

    L Lindsay Phys. Rev. B 87 165201 (2013)

    ADS  Article  Google Scholar 

  16. [16]

    W Li, N Mingo, L Lindsay, D A Broido, A D Stewart and N A Katcho Phys. Rev. B 85 195436 (2012)

    ADS  Article  Google Scholar 

  17. [17]

    J-P M Peraud, C D Landon and N G Hadjiconstantinou Annu. Rev. Heat Transfer 17 205 (2014)

    Article  Google Scholar 

  18. [18]

    R A Escobar, S S Ghai, M S Jhon and C H Amon Int. J. Heat Mass Transfer 49 97 (2006)

    Article  Google Scholar 

  19. [19]

    A Nabovati J. Comput. Phys. 230 5864 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    R A Guyer and J A Krumhansl Phys. Rev. 148 778 (1966)

    ADS  Article  Google Scholar 

  21. [21]

    R J Hardy and D L Albers Phys. Rev. B 10 3546 (1974)

    ADS  Article  Google Scholar 

  22. [22]

    W Larecki Il Nuovo Cimento D 14 141 (1992)

    ADS  Article  Google Scholar 

  23. [23]

    Z Banach and W Larecki J. Phys. A Math. Gen. 37 9805 (2004)

    ADS  Article  Google Scholar 

  24. [24]

    Z Banach and W Larecki J. Phys. A Math. Gen. 38 8781 (2005)

    ADS  Article  Google Scholar 

  25. [25]

    Z Banach and W Larecki J. Phys. A 41 375502 (2008)

    Article  Google Scholar 

  26. [26]

    F X Alvarez, V A Cimmelli, D Jou and A Sellitto Nanosc. Syst. Math. Model. Theory Appl. 1 112 (2012)

    ADS  Google Scholar 

  27. [27]

    D D Joseph and L Preziosi Rev. Modern Phys. 61 41 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    R G Yang and G Chen J. Heat Transfer 127 298 (2005)

    Article  Google Scholar 

  29. [29]

    Y Zhang and W Ye Int. J. Heat Mass Transfer 83 51 (2015)

    Article  Google Scholar 

  30. [30]

    G Lebon, M Grmela and C Dubois C. R. Mec. 339 324 (2011)

    ADS  Article  Google Scholar 

  31. [31]

    M Wang and Z-Y Guo Phys. Lett. A 374 4312 (2010)

    ADS  Article  Google Scholar 

  32. [32]

    M Wang J. Appl. Phys. 110 064310 (2011)

    ADS  Article  Google Scholar 

  33. [33]

    M Wang, X Shan and N Yang Phys. Phys. Lett. A 376 3514 (2012)

    ADS  Article  Google Scholar 

  34. [34]

    Y Dong, B-Y Cao and Z-Y Guo J. Appl. Phys. 110 063504 (2011)

    ADS  Article  Google Scholar 

  35. [35]

    A Sellitto and V A Cimmelli J. Heat Transfer 134 112402 (2012)

    Article  Google Scholar 

  36. [36]

    C V Anderson and K K Tamma Phys. Rev. Lett. 96 184301 (2006)

    ADS  Article  Google Scholar 

  37. [37]

    K R Naqvi and S Waldenstrom Phys. Rev. Lett. 95 065901 (2005)

    ADS  Article  Google Scholar 

  38. [38]

    D Jou, M Criado-Sancho and J Casas-Vázquez J. Appl. Phys. 107 084302 (2010)

    ADS  Article  Google Scholar 

  39. [39]

    A Sellitto, F X Alvarez and D Jou J. Appl. Phys. 107 114312 (2010)

    ADS  Article  Google Scholar 

  40. [40]

    V A Cimmelli, A Sellitto and D Jou Phys. Rev. B 82 184302 (2010)

    ADS  Article  Google Scholar 

  41. [41]

    D Jou, A Cimmelli and A Sellitto Int. J. Heat Mass Transfer 55(9-10) 2338 (2012)

    Article  Google Scholar 

  42. [42]

    A Cepellotti, G Fugallo, L Paulatto, M Lazzeri, F Mauri and N Marzari Nat. Commun. 6 6400 (2015)

    ADS  Article  Google Scholar 

  43. [43]

    I Carlomagno, A Sellitto and D Jou Phys. Lett. A 379(40–41) 2652 (2015)

    ADS  Article  Google Scholar 

  44. [44]

    Y Guo and M Wang Phys. Rev. B 97 035421 (2018)

    ADS  Article  Google Scholar 

  45. [45]

    A Beardo, M G Hennessy, L Sendra, J Camacho, T G Myers, J Bafaluy, and F X Alvarez Phys. Rev. B 101 075303 (2020)

    ADS  Article  Google Scholar 

  46. [46]

    Y Machida, N Matsumoto, T Isono and K Behnia Science 367 309 (2020)

    ADS  Article  Google Scholar 

  47. [47]

    C De Tomas and A Cantarero J. Appl. Phys. 115 164314 (2014)

    ADS  Article  Google Scholar 

  48. [48]

    Y Guo and M Wang Phys. Rev. B 96 134312 (2017)

    ADS  Article  Google Scholar 

  49. [49]

    P Torres, A Torelló, J Bafaluy, J Camacho, X Cartoixà and F X Alvarez Phys. Rev. B 95 165407 (2017)

    ADS  Article  Google Scholar 

  50. [50]

    Y Guo, D Jou and M Wang Phys. Rev. B 98 104304 (2018)

    ADS  Article  Google Scholar 

  51. [51]

    P Torres, A Ziabari, A Torelló, J Bafaluy, J Camacho and X Cartoixà Phys. Rev. Mater. 2 076001 (2018)

    Article  Google Scholar 

  52. [52]

    P Torres, F X Alvarez, X Cartoixà and R Rurali (2019) 2D Mater. 6(3) 035002

    Article  Google Scholar 

  53. [53]

    H J Kreuzer Nonequilibrium Thermodynamics and its Statistical Foundations, Claredon, Oxford, UK, 1981

    Google Scholar 

  54. [54]

    H G B Casimir Rev. Mod. Phys. 17 343 (1945)

    ADS  Article  Google Scholar 

  55. [55]

    D Jou, J Casas-Vazquez and G Lebon Extended Irreversible Thermodynamics (Berlin: Springer) fourth enlarged edition (2010)

  56. [56]

    I Müller and T Ruggeri Extended Thermodynamics (Berlin: Springer) (1993)

    Google Scholar 

  57. [57]

    D Jou, J Casas-Vazquez and G Lebon Rep. Prog. Phys. 62 1035 (1999)

    ADS  Article  Google Scholar 

  58. [58]

    G Lebon and D Jou Eur. Phys. J. H. 40 205-240 (2015)

    Article  Google Scholar 

  59. [59]

    J P Boon and S Yip Molecular Hydrodynamics (New York, USA: McGraw-Hill) 1980; Reprinted by: Dover, New York, USA (1991)

  60. [60]

    T Dedeurwaerdere, J Casas-Vázquez, D Jou and G Lebon Phys. Rev. E 53 498 (1996)

    ADS  Article  Google Scholar 

  61. [61]

    C A B Silva, C G Rodrigues, J G Ramos and R Luzzi Phys. Rev. E 91 063011 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    C A B Silva, J G Ramos, A R Vasconcellos and R Luzzi J. Stat. Phys. 143 1020 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    J G Ramos, C G Rodrigues, C A B Silva and R Luzzi Braz. J. Phys. 49 277 (2019)

    ADS  Article  Google Scholar 

  64. [64]

    U Fano Rev. Mod. Phys. 29 74 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    R P Feynman Lectures in Statistical Mechanics (Reading, MA, USA: Benjamin) (1972)

  66. [66]

    D N Zubarev Nonequilibrium Statistical Thermodynamics (Plenum-Consultants Bureau: New York, USA) (1974)

  67. [67]

    R Luzzi, A R Vasconcellos and J G Ramos, Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism (Dordrecht, The Netherlands: Kluwer Academic) (2002)

    Google Scholar 

  68. [68]

    R Luzzi, A R Vasconcellos and J G Ramos Rivista Nuovo Cimento 29 1 (2006)

    Google Scholar 

  69. [69]

    R Luzzi, A R Vasconcellos and J G Ramos Statistical Foundations of Irreversible Thermodynamics (Stuttgart, Germany: Teubner-Bertelsmann Springer) (2000)

    Google Scholar 

  70. [70]

    R Luzzi, A R Vasconcellos and J G Ramos Rivista Nuovo Cimento 30 95 (2007)

    Google Scholar 

  71. [71]

    R Luzzi and A R Vasconcellos, Ultrafast Transient Response of nonequilibrium plasma in semiconductors, in: Semiconductor Processes Probed by Ultrafast Laser Spectroscopy, vol. 1, edited by R. R. Alfano, Academic, New York, USA (1984)

    Google Scholar 

  72. [72]

    C G Rodrigues, V N Freire, J A P Costa, A R Vasconcellos and R Luzzi Phys. Stat. Sol. B 216 35 (1999)

    ADS  Article  Google Scholar 

  73. [73]

    C G Rodrigues, A R Vasconcellos and R Luzzi J. Phys. D 38 3584 (2005)

    ADS  Article  Google Scholar 

  74. [74]

    C G Rodrigues, A R Vasconcellos and R Luzzi Braz. J. Phys. 36 255 (2006)

    ADS  Google Scholar 

  75. [75]

    A Ott, J P Bouchaud, D Langevin and W Urbach Phys. Rev. Lett. 65 2201 (1990)

    ADS  Article  Google Scholar 

  76. [76]

    R Luzzi, A R Vasconcellos, J G Ramos and C G Rodrigues Theor. Math. Phys. 194 4 (2018)

    Article  Google Scholar 

  77. [77]

    A I Akhiezer and S V Peletminskii Methods of Statistical Physics (Oxford, UK: Pergamon) (1981)

    Google Scholar 

  78. [78]

    L Lauck, A R Vasconcellos and R Luzzi Physica A 168 789 (1990)

    ADS  Article  Google Scholar 

  79. [79]

    J R Madureira, A R Vasconcellos, R Luzzi and L Lauck Phys. Rev. E 57 3637 (1998)

    ADS  Article  Google Scholar 

  80. [80]

    J C Maxwell Philos. Trans. R. Soc. (Lond.) 157 49 (1867)

    ADS  Article  Google Scholar 

  81. [81]

    C G Rodrigues, C A B Silva, J G Ramos and R Luzzi Phys. Rev. E 95 022104 (2017)

    ADS  Article  Google Scholar 

  82. [82]

    R Balian, Y Alhassed and H Reinhardt Phys. Rep. 131 1 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  83. [83]

    J G Ramos, A R Vasconcellos and R Luzzi J. Chem. Phys. 112 2692 (2000)

    ADS  Article  Google Scholar 

  84. [84]

    R Luzzi, M A Scarparo, J G Ramos, A R Vasconcellos and M L Barros, J. Non-Equil. Thermodynamic. 22 197 (1997)

    ADS  Google Scholar 

  85. [85]

    B J Adler and D J Tildesley Computer Simulation in Liquids (Oxford, UK: Oxford Univ. Press) (1987)

    Google Scholar 

  86. [86]

    M H Kalos and P A Whitlock Monte Carlo Methods (New York, USA: Wiley Interscience) (2007)

    Google Scholar 

  87. [87]

    C G Rodrigues, A R B Castro and R Luzzi Phys. Stat. Solidi B 252 2802 (2015)

    ADS  Article  Google Scholar 

  88. [88]

    A R Vasconcellos, A R B Castro, C A B Silva and R Luzzi AIP Adv. 3 072106 (2013)

    ADS  Article  Google Scholar 

  89. [89]

    C G Rodrigues, A R Vasconcellos and R Luzzi Eur. Phys. J. B 86 200 (2013)

    ADS  Article  Google Scholar 

  90. [90]

    C G Rodrigues, A R Vasconcellos and R Luzzi Physica E 60 50 (2014)

    Article  Google Scholar 

  91. [91]

    L D Landau and E M Lifschitz Theory of Elasticity (Oxford, UK: Pergamon) (1986)

    Google Scholar 

  92. [92]

    C G Rodrigues, A R Vasconcellos, V N Freire and R Luzzi Braz. J. Phys. 32 439 (2002)

    ADS  Article  Google Scholar 

  93. [93]

    C G Rodrigues, J. R. L. Fernandez, V N Freire, A R Vasconcellos, J R Leite and R Luzzi J. Appl. Phys. 95 4914 (2004)

    ADS  Article  Google Scholar 

  94. [94]

    C G Rodrigues, A R Vasconcellos, R Luzzi and V N Freire J. Appl. Phys. 98 043703 (2005)

    ADS  Article  Google Scholar 

  95. [95]

    C G Rodrigues, A R Vasconcellos and R Luzzi J. Appl. Phys. 102 073714 (2007)

    ADS  Article  Google Scholar 

  96. [96]

    C G Rodrigues, A R Vasconcellos and R Luzzi Eur. Phys. J. B 72 67 (2009)

    ADS  Article  Google Scholar 

  97. [97]

    R Balian From Microphysics to Macrophysics vol. 2 (Berlin, Germany: Springer) (2007)

  98. [98]

    O S Duarte and A O Caldeira Phy. Rev. Lett. 97 250601 (2006)

    ADS  Article  Google Scholar 

  99. [99]

    A F Fonseca and M V Mesquita J. Chem. Phys. 112 3967 (2000)

    ADS  Article  Google Scholar 

  100. [100]

    M V Mesquita, A R Vasconcellos and R Luzzi Phys. Rev. E 48 4049 (1993)

    ADS  Article  Google Scholar 

  101. [101]

    C G Rodrigues, F S Vannucchi and R Luzzi Adv. Quantum Technol. 1 201800023 (2018)

    Article  Google Scholar 

  102. [102]

    C G Rodrigues, A R Vasconcellos and R Luzzi J. Appl. Phys. 108 033716 (2010)

    ADS  Article  Google Scholar 

  103. [103]

    C G Rodrigues, A R Vasconcellos and R Luzzi Solid State Commun. 140 135 (2006)

    ADS  Article  Google Scholar 

  104. [104]

    C G Rodrigues, A R Vasconcellos and R Luzzi J. Appl. Phys. 113 113701 (2013)

    ADS  Article  Google Scholar 

  105. [105]

    R Balescu Equilibrium and Nonequilibrium Statistical Mechanics (New York, USA: Wiley-Interscience) (1975)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clóves G. Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: NESEF kinetic equation

A kinetic equation of evolution for the single-particle distribution function \(f_{1}({\mathbf{r}},{\mathbf{p}};t)\) follows from the NESEF-based kinetic theory [67, 76, 78],

$$\begin{aligned} \frac{\partial }{\partial t}f_{1}({\mathbf{r}},{\mathbf{p}};t) = {\mathrm{Tr}} \left\{ \{{\widehat{n}}_{1}({\mathbf{r}},{\mathbf{p}}),{\widehat{H}}\} \varrho _{\varepsilon }(t) \right\} , \end{aligned}$$
(57)

that is, the average over the nonequilibrium ensemble characterized by the statistical operator \(\varrho _{\varepsilon }(t)\). The method was used successfully in semiconductors far from equilibrium [92,93,94,95,96].

Using the Hamiltonian of Eq. (7), with \({\widehat{H}}_{0}\) being the kinetic energy and \({\widehat{H}}^{\prime }\) containing all the interactions, that is, pair interactions between the system particles, of the system particles with those of the thermal bath, and the interactions with applied external sources. Resorting to the approximation of keeping only the contribution from the irreducible two particle collisions, lengthy but straightforward calculations lead to the kinetic equation

$$\begin{aligned}&\frac{\partial }{\partial t} f_{1}({\mathbf{r}},{\mathbf{p}};t) + \frac{{\mathbf{P}}({\mathbf{r}},{\mathbf{p}};t)}{m} \cdot \nabla f_{1}({\mathbf{r}},{\mathbf{p}};t) \\&\quad +{\mathbf{F}}({\mathbf{r}},{\mathbf{p}};t) \cdot \nabla _{{\mathbf{p}}} f_{1}({\mathbf{r}},{\mathbf{p}};t) - B({\mathbf{p}}) f_{1}({\mathbf{r}},{\mathbf{p}};t) \\&\quad -A_{2}^{[2]}({\mathbf{p}}) \odot [\nabla _{{\mathbf{p}}} \nabla ] f_{1}({\mathbf{r}},{\mathbf{p}};t) \\&\quad - B_{2}^{[2]}({\mathbf{p}}) \odot [\nabla _{{\mathbf{p}}} \nabla _{{\mathbf{p}}}] f_{1}({\mathbf{r}},{\mathbf{p}};t) = J_{S}^{(2)}({\mathbf{r}},{\mathbf{p}};t) , \end{aligned}$$
(58)

where

$$\begin{aligned} {\mathbf{P}}({\mathbf{r}},{\mathbf{p}};t) = {\mathbf{p}} - m{\mathbf{A}}_{1}({\mathbf{p}}) \end{aligned}$$
(59)

plays the role of a generalized nonlinear momentum,

$$\begin{aligned} {\mathbf{F}}({\mathbf{r}},{\mathbf{p}};t) = - \nabla U_{ext}({\mathbf{r}},t) - {\mathbf{B}}_{1}({\mathbf{p}}) - {\mathbf{F}}_{NL}({\mathbf{r}};t) - \nabla U({\mathbf{r}};t) , \end{aligned}$$
(60)

is a generalized force, in which

$$\begin{aligned} {\mathbf{F}}_{NL}({\mathbf{r}};t) = \int d^{3}r^{\prime } \int d^{3}p^{\prime } {\mathbf{G}}_{NL}({\mathbf{r}}^{\prime } - {\mathbf{r}},{\mathbf{p}}^{\prime }) f_{1}( {\mathbf{r}}^{\prime },{\mathbf{p}}^{\prime };t) , \end{aligned}$$
(61)

with full details given in Ref. [61]. The symbol \(\odot\) stands for contracted product of tensors.

When Eq. (58) is compared with, say, standard Boltzmann kinetic equation, it contains several additional contributions. First, \({\mathbf{P}}({\mathbf{p}};t)\), Eq. (59), can be interpreted as a modified momentum, composed of the linear one, \({\mathbf{p}}\), plus a contribution arising out of the interaction with the thermal bath, \(m {\mathbf{A}}_{1}({\mathbf{p}})\). The contribution \(m {\mathbf{A}}_{1}({\mathbf{p}})\) can be considered as implying in a transfer of momentum between system and bath.

The force \({\mathbf{F}}({\mathbf{r}},{\mathbf{p}};t)\), in Eq. (60), is composed of four contributions: The first one, \(-\nabla U_{ext}\), is the external applied force; next, \({\mathbf{B}}_{1}({\mathbf{p}})\), arising out of the interaction with the thermal bath, is a contribution that, together with the fourth one in Eq. (58), namely \({\mathbf{B}}({\mathbf{p}}) f_{1}\), constitutes a generalization of the so-called effective friction force. In the limit of a Brownian system (\(m\gg M\)), it is recovered the known expression [97] \(\gamma \nabla _{{\mathbf{p}}}[({\mathbf{p}}/m) f_{1}({\mathbf{r}},{\mathbf{p}};t)]\) with the friction coefficient given by \(\gamma = m/\tau\), where \(\tau\) is the momentum relaxation time. In the limit of a Lorentz system, (\(m\ll M\)) \({\mathbf{B}}_{1}({\mathbf{p}})\) and \({\mathbf{B}}({\mathbf{p}})\) tend to zero and then this friction force is practically null.

The third contribution to the force \({\mathbf{F}}({\mathbf{r}},{\mathbf{p}};t)\), i.e., \({\mathbf{F}}_{NL}({\mathbf{r}};t)\), is an interesting one, which is an effective force between pairs of particles generated through the interaction of each of the pair with the thermal bath. A similar presence of an induced effective coupling of this type has been evidenced in the case of two Brownian particles embedded in a thermal bath [98], and also, it can be noticed the similarity with the one that leads to the formation of Cooper pairs in type-I superconductivity. Such contribution is of a nonlinear (bilinear in \(f_{1}\)) character and therefore eventually may lead to the emergence of complex behavior in the system, e. g., the cases of the so-called nonequilibrium Bose–Einstein-like condensation [99,100,101,102,103,104]. The last contribution, \(- \nabla U\), is usually called the self-consistent or mean field force, containing the proper single-particle distribution and then providing a nonlinear contribution to the kinetic equation.

The fifth term on the left of Eq. (58) consists of a cross double differentiation, namely the rank-2 tensor \([\nabla _{{\mathbf{p}}} \nabla ] f_{1}\), which takes into account effects of anisotropy caused by nonuniformity. The sixth one consists of a double differentiation in the momentum variable, the rank-2 tensor \([\nabla _{{\mathbf{p}}} \nabla _{{\mathbf{p}}}] f_{1}\), which is related to the so-called diffusion in momentum space. Both contributions have their origins in the interaction of the particles with the thermal bath, that is, in those terms of the collision integral \(J_{1}^{(2)}\) containing the potential w (see Eq. (11)).

Finally, on the right, \(J_{S}^{(2)}\) is the collision integral resulting from the interaction between the particles taken in the weak coupling limit, i.e., the so-called weakly coupled gas collision integral [105].

To go beyond the weak-coupling approximation, one needs to go back to the general kinetic equation to include memory effects and higher-order collision integrals, so that to include vertex renormalization [100].

Appendix 2: The kinetic coefficients in Eq. (32)

We do have that

$$\begin{aligned} a_{\tau 0} = \frac{\mathcal {V}}{(2 \pi )^{3}} \frac{4 \pi }{3} \int dQ \, Q^{4} f_{\tau 0}(Q) , \end{aligned}$$
(62)

with

$$\begin{aligned} f_{\tau 0}(Q) = - \frac{n_{R}}{\mathcal {V}} \frac{\left( M \beta _{0} \right) ^{3/2} \pi }{\sqrt{2 \pi } m^{2}} \frac{\left| \psi (Q)\right| ^{2}}{Q} \left( \frac{m}{M} + 1 \right), \end{aligned}$$
(63)

where \(\psi (Q)\) is the Fourier transform of the potential energy \(w(\left| {\mathbf{r}}_{j}-{\mathbf{R}}_{\mu }\right| )\), \(n_{R}\) is the density of particles in the thermal bath, \(\mathcal {V}\) is the volume, and \(\beta _{0}^{-1} = k_{B} T_{0}\). Moreover,

$$\begin{aligned} a_{\tau 1}= & {} - \frac{M \beta _{0}}{10} a_{\tau 0} , \end{aligned}$$
(64)
$$\begin{aligned} a_{L0}= & {} \sqrt{\frac{2}{M \beta _{0} \pi }} \frac{1}{\kappa } a_{\tau 0} , \end{aligned}$$
(65)
$$\begin{aligned} \frac{1}{\kappa }= & {} \frac{\int dQ \, Q^{2}\left| \psi (Q) \right| ^{2} }{\int dQ \, Q^{3}\left| \psi (Q) \right| ^{2} \left( 1 + \frac{m}{M} \right) } , \end{aligned}$$
(66)
$$\begin{aligned} b_{\tau 0}= & {} - \frac{2}{M \beta _{0}} a_{\tau 0} \left( 1 + \frac{m}{M} \right) ^{-1} , \end{aligned}$$
(67)
$$\begin{aligned} b_{\tau 1}= & {} \frac{a_{\tau 0}}{5} \left( 1 + \frac{m}{M} \right) ^{-1} , \end{aligned}$$
(68)
$$\begin{aligned} a_{L 1}= & {} - \frac{1}{5\kappa } \sqrt{\frac{2M \beta _{0}}{\pi }} a_{\tau 0} . \end{aligned}$$
(69)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.G., Silva, C.A.B., Ramos, J.G. et al. Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations. Indian J Phys (2021). https://doi.org/10.1007/s12648-020-01968-0

Download citation

Keywords

  • Thermal transport
  • Thermal prototyping
  • Hydrothermodynamics