The eigenvalue problem of the general Einstein–Weyl metric equation and exact self-similar and multi-traveling waves solutions

Abstract

The integrability of the general Einstein–Weyl Metric equation is studied . Here, the approach proposed is based on using the extended and generalized unified methods. These methods inspect the integrability conditions, whenever exist. The exact solutions are thus obtained. They provide the existence and uniqueness of solution for initial value problem where initial value is taken from the exact solutions obtained. Similarity variables are introduced, and the extended unified method is applied to find a class of explicit self-similar wave solutions to the GEWM equation. Numerical evaluations of the solutions are done via symbolic computation. These results show periodic solitons and multi-lumps. It is found that the generalized heavenly equation admits a class of infinite solutions, among them the chaotic ones. The generalized unified method is used to find multi-traveling solitary waves solutions. We think that the presented methods generalize the known ones in the literature. This will be illustrated later on.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. [1]

    S V Manakov and P M Santini J. Phys A. Math. Theo. 44, 345203 (2011)

    ADS  Article  Google Scholar 

  2. [2]

    M Dunajski, L J Mason and P Tod J. Geom. Phys. 37 63 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    L Martinez Alonso, and A B Shabat J. Nonlinear Math. Phys. 10 10229 (2003)

    Google Scholar 

  4. [4]

    M Dunajski J. Geom. Phys. 51 126 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    W Fu, R Ilangovane, K M Tamizhmani and Da-jun Zhang J. Math. Phys. 55 083504 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    S V Manakov and P M Santini JETP Lett. 83 462 (2006)

    Article  Google Scholar 

  7. [7]

    M Dunajski J Phys. A. 41 315202 (2008)

    MathSciNet  Article  Google Scholar 

  8. [8]

    S V Manakov and P M Santini J Phys. A. Math. Theor. 42 095203 (2009)

    ADS  Article  Google Scholar 

  9. [9]

    L M Alonso and M Mañas .J. of Math. Phys. 44 3294 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    T Grava1, C Klein and J Eggers Nonlinearity 29 1384 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    E AGiulio and S L Solombrino Math. Phys. Lett. 41 379 ( 1997)

    Article  Google Scholar 

  12. [12]

    L V Bogdanov1 and B G Konopelchenko J. Phys. A: Math. Gen. 39 30 (2006)

  13. [13]

    L V Bogdanov and B G Konopelchenko Phys. Lett. A 345 137(2005)

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S V Manakov and P M Santini Phys. Lett. A 359 613 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    H I Abdel-Gawad J. Stat. Phys. 147 506 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    H I Abdel-Gawad, N El-Azab and M OsmanJPSP 82 044004 (2013)

    ADS  Google Scholar 

  17. [17]

    H I Abdel-Gawad, NL Dynamics, 85 1509–1515 (2016)

    Google Scholar 

  18. [18]

    H I Abdel-Gawad and M S Osman Indian j. pure , Appl. Math. 45 1 (2014)

    MathSciNet  Article  Google Scholar 

  19. [19]

    H I Abdel-Gawad and A Biswas Acta. Phys. Pol.B 47 1101 (2016)

    ADS  Article  Google Scholar 

  20. [20]

    H I Abdel-Gawad and M Tantawy Nonlinear Dyn. 90 233 (2017)

    Article  Google Scholar 

  21. [21]

    M Inc, H I Abdel-Gawad M, Tantawy and A I Yusuf Math. Meth. Appl .Sci. 42 2455 (2019)

    Article  Google Scholar 

  22. [22]

    S M Ege and E Misirli Adv. Diff. Eqs. 135 1 (2014)

    Google Scholar 

  23. [23]

    S Sahoo, G Garai and S Saha Ray, Nonlinear Dyn. 87 1995 (2017)

    Article  Google Scholar 

  24. [24]

    R Hirota Lecture Notes in Mathematics , R.M. Miura (eds), Springer, Berlin 515 40 (1976)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H I Abdel-Gawad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Gawad, H.I. The eigenvalue problem of the general Einstein–Weyl metric equation and exact self-similar and multi-traveling waves solutions. Indian J Phys (2021). https://doi.org/10.1007/s12648-020-01956-4

Download citation

Keywords

  • Einstein–Weyl
  • Metric equation
  • Self-similar
  • Multi-waves
  • Extended
  • Generalized
  • Unified method