Unsteady 3D micropolar nanofluid flow through a squeezing channel: application to cardiovascular disorders

Abstract

Micropolar fluids had many industrial applications such as polymer solutions, lubricant fluids, and biological structures. However, the present study deals with the drug delivery in the cardiovascular system where the blood particles are considered as microparticles included their self-rotation (mainly red blood cells) and interaction. The nanoparticles may be used as drug carrier particles. In the present problem, nanoparticles are considered as metallic oxides, e.g., Alumina (\({\text {Al}} _2{\text {O}} _3\)), Titania (\({\text {TiO}} _2\)), and Magnetite (\({\text {Fe}} _3{\text {O}} _4\)) with water as base fluid. The magnetohydrodynamic micropolar fluid flow between two parallel squeezing plates is considered. Further, the analysis is carried out in the presence of viscous dissipation and Joule heating effects. With the aid of a similarity transformation, the flow governing Navier–Stokes equations is transformed into a system of coupled nonlinear ordinary differential equations. Fourth-order Runge–Kutta method with shooting approach is used to solve the nonlinear coupled boundary value problem. The profiles of flow field variables are acquired for key parameters arising in the present problem. It is noticed that, when the plates are fixed, the viscous drag of the base fluid is the same as that of nanofluid. Further, it is observed that increasing volume fraction results a decrement in microrotation and thereby causing an increase in temperature of Titania–water nanofluid which is in contrast to the behavior of other nanofluids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

t :

Time

h(t):

Distance between origin and upper plate

\(\mu\) :

Kinematic viscosity

\(\rho\) :

Density of the fluid

\(v_w\) :

Squeezing velocity

p :

Fluid pressure

\(\kappa\) :

Thermal conductivity

\(C_p\) :

Specific heat at constant temperature

\(k_1\) :

Permeability parameter

\(\sigma\) :

Electrical conductivity

\(\mu '\) :

Magnetic permeability

\(v_1\) :

Axial velocity

\(v_2\) :

Radial velocity

\(v_3\) :

Microrotation

T :

Temperature

\(T_1\) :

Temperature of the upper plate

\(\theta\) :

Dimensionless temperature

\(\eta\) :

Dimensionless ordinate

\(\delta\) :

Dimensionless length

\(\alpha\) :

Characteristic parameter

References

  1. 1.

    S Berman J. Appl. Phys.24 1232 (1953)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    R M Terril and G M Shrestha ZAMP16 470 (1965)

    ADS  Google Scholar 

  3. 3.

    K D Singh and A Mathew Indian J. Phys.83 1439 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    M C Stephen J. Fluid Mech.227 1 (1991)

    MathSciNet  Article  Google Scholar 

  5. 5.

    R Muhammad, M Ijaz Khan, M Jameel and N B Khan Computer Methods and Programs in Biomedicine (2019). https://doi.org/10.1016/j.cmpb.2019.105298

  6. 6.

    K Bhaskar and K Sharma Indian J. Phys.https://doi.org/10.1007/s12648-020-01805-4 (2020)

  7. 7.

    Y Menni, A J Chamkha and A Azzi J. Appl. Comput. Mech.6(4) 741 (2020)

    Google Scholar 

  8. 8.

    J C Umavathi, A J Chamkha, A Mateen and A Al-Mudhafi Heat Mass Transf.42 81 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    A J Chamkha J. Fluids Eng.122 117 (2000)

    Article  Google Scholar 

  10. 10.

    C Y Wang J. Appl. Mech.43 579 (1976)

    ADS  Article  Google Scholar 

  11. 11.

    M M Rashidi, H Shahmohamadi and S Dinarvand Math. Probl. Eng.2008 1 (2008)

    Article  Google Scholar 

  12. 12.

    A M Siddiqui, S Arum and A R Ansari Math. Model. Anal.13 565 (2008)

    MathSciNet  Article  Google Scholar 

  13. 13.

    G Domairry and A Aziz Math. Probl. Eng.2009 1 (2009)

    Article  Google Scholar 

  14. 14.

    P Raissi, M Shamlooei, S M E Sepasgozar and M Ayani Propuls. Power Res.5 318 (2016)

    Article  Google Scholar 

  15. 15.

    Md Shamshuddin, S R Mishra, O A Beg and A Kadir Arab. J. Sci. Eng.44 8053 (2019)

    Article  Google Scholar 

  16. 16.

    M Mustafa, T Hayat and S Obaidat Meccanica47 1581 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    S U S Choi and J A Eastman Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco (1995)

  18. 18.

    H C Brinkman J. Chem. Phys.20 571 (1952)

    ADS  Article  Google Scholar 

  19. 19.

    R K Tiwari and M K Das Int. J. Heat Mass Transf.50 2002 (2007)

    Article  Google Scholar 

  20. 20.

    K Khanafer, K Vafai and M Lighstone Int. J. Heat Mass Transf.46 3639 (2003)

    Article  Google Scholar 

  21. 21.

    J A Maxwell 2nd Edition, Cambridge: Oxford University Press (1904)

  22. 22.

    A S Dogonchi, T Tayebi, A J Chamkha, D D Ganjii J. Therm. Anal. Calorim.139 661 (2020)

    Article  Google Scholar 

  23. 23.

    N S Shashikumar, B J Gireesha, B Mahanthesh, B C Prasannakumara , A J Chamkha Int. J. Numer. Methods Heat Fluid Flow29 3638 (2019)

    Article  Google Scholar 

  24. 24.

    M Ghalambaz, A J Chamkha and D Wena Int. J. Heat Mass Transf.138738 (2019)

    Article  Google Scholar 

  25. 25.

    F Selimefendigil, H F Oztop and A J Chamkha Iran J. Sci. Technol. Trans. Mech. Eng.43593 (2019)

    Article  Google Scholar 

  26. 26.

    A J Chamkha, M Molana, A Rahnama and F Ghadami Powder Technol.332 287 (2018)

    Article  Google Scholar 

  27. 27.

    A S Dogonchi, T Armaghani, A J Chamkha and D D Ganji Powder Technol.44 7919 (2019)

    Google Scholar 

  28. 28.

    A M Hafiz, U S Muhammad and A Adeel INTECH 1 (2017)

  29. 29.

    M U Sajid, H M Ali, A Sufyan, D Rashid, S U Zahid and W U Rehman J. Therm. Anal. Calorim137 1279 (2019)

    Article  Google Scholar 

  30. 30.

    M U Sajid and H M Ali Int. J. Heat Mass Transf.126 211 (2018)

    Article  Google Scholar 

  31. 31.

    H A M Ali, H Babar, T R Shah, M U Sajid, Md A Qasim and S Javed Appl. Sci.8, 587 (2018)

    Article  Google Scholar 

  32. 32.

    M U Sajid and H M Ali Sustain. Energy Rev.103 556 (2019)

    Article  Google Scholar 

  33. 33.

    H Babar, M U Sajid and H M Ali Therm. Sci. 1 (2019)

  34. 34.

    R Muhammad and M Ijaz Khan Computer Methods and Programs in Biomedicine, https://doi.org/10.1016/j.cmpb.2019.105294 (2019)

  35. 35.

    K Ganesh Kumar, M Rahimi-Gorji, M Gnaneswara Reddy, A J Chamkha and I M Alarifi Microsyst. Technol.26 323 (2020)

    Article  Google Scholar 

  36. 36.

    A Chamkha, M Ismael, A Kasaeipoor and T Armaghani Entropy18 50 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    R Mohebbi, M Izadi and A J Chamkha Phys. Fluids29 122009 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    T Tayebia, A J Chamkha and M Djezzara Scientia Iranica B26(5) 2770 (2019)

    Google Scholar 

  39. 39.

    M Ghalambaz, S A M Mehryan, E Izadpanahi, A J Chamkha and D Wen J. Therm. Anal. Calorim.138 1723 (2019)

    Article  Google Scholar 

  40. 40.

    T Tayebi, and A J Chamkha Int. J. Numer. Methods Heat Fluid Flow30(3) 1115 (2020)

    Article  Google Scholar 

  41. 41.

    T Tayebi and A J Chamkha J. Therm. Anal. Calorim.139 2165 (2020)

    Article  Google Scholar 

  42. 42.

    S A M Mehryan, E Izadpanahi, M Ghalambaz and AJ Chamkha J. Therm. Anal. Calorim.137 965 (2019)

    Article  Google Scholar 

  43. 43.

    M Ghalambaz, A Doostani, E Izadpanahi and A J Chamkha J. Therm. Anal. Calorim.139 2321 (2020)

    Article  Google Scholar 

  44. 44.

    M Ibrahim and M Ijaz Khan Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2019.105222 (2019)

  45. 45.

    B J Gireesha, G Sowmya, M Ijaz Khan and H F Oztop Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2019.105166 (2019)

  46. 46.

    J Wang, R Muhammad, M Ijaz Khan, W A Khan and S Z Abbas Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2019.105311

  47. 47.

    T Hayat, M Ijaz Khan, T Ahmad Khan, M I Khan, S Ahmad and A Alsaedi J. Mol. Liquids. https://doi.org/10.1016/j.molliq.2018.06.017 (2018)

  48. 48.

    M Rashid, M Ijaz Khan, T Hayat, M Imran Khan and A Alsaedi J. Mol. Liquidshttps://doi.org/10.1016/j.molliq.2018.11.148 (2018)

  49. 49.

    A S Dogonchi, T Tayebi and A J Chamkha J. Therm. Anal. Calorim.139 661 (2020)

    Article  Google Scholar 

  50. 50.

    Md Z Akbar, Md Ashraf, Md F Iqbal and K Ali AIP Adv.6 045222 (2016)

    ADS  Article  Google Scholar 

  51. 51.

    A Kashif, M Z Akbar, M F Ibal and M Ashraf AIP Adv.4 107713 (2014)

    Google Scholar 

  52. 52.

    N Acharya, K Das and P K Kundu Alexandria Eng. J.55 1177 (2016)

    Article  Google Scholar 

  53. 53.

    M G Sobamowo and A T Akinshilo Alexandria Eng. J.57 1413 (2018)

    Article  Google Scholar 

  54. 54.

    K Das, S Jana and N Acharya Int. J. Appl. Mech. Eng.21 5 (2016)

    Article  Google Scholar 

  55. 55.

    S Islam, H Khan, I A Shah and G Zaman Math. Problems Eng.2011 1 (2011)

    Article  Google Scholar 

  56. 56.

    T Hayat, M Ijaz Khan, M Farooq, A Alsaedi, M Waqas and Tabassam Yasmeen Int. J. Heat Mass Transf.99 702 (2016)

    Article  Google Scholar 

  57. 57.

    M I Khan, M Waqas, T Hayat and A Alsaedi J. Colloid Interface Sci.http://dx.doi.org/10.1016/j.jcis.2017.03.024 (2017)

  58. 58.

    M K Nayak, A K Abdul Hakeem , B Ganga , M Ijaz Khan, M Waqas and O D Makinde Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2019.105131 (2019)

  59. 59.

    Sumaira Qayyum, M Ijaz Khan, T Hayat, A Alsaedi and M Tamoor Int. J. Heat Mass Transf.127 933 (2018)

    Article  Google Scholar 

  60. 60.

    T Hayat, M Waleed Ahmed Khan, A Alsaedi and M Ijaz khan Colloid Polym. Sci.295 967 (2017)

    Article  Google Scholar 

  61. 61.

    A C Eringen Int. J. Eng. Sci.2 205 (1964)

    MathSciNet  Article  Google Scholar 

  62. 62.

    A C Eringen J. Math. Mech.16 1 (1964)

    Google Scholar 

  63. 63.

    A Kumar, R Tripathi, R Singh and G S Seth Indian J. Phys.94 319 (2020)

    ADS  Article  Google Scholar 

  64. 64.

    MD Shamshuddin, O A Beg, M S Ram and A Kadir Indian J. Phys.92 215 (2018)

    ADS  Article  Google Scholar 

  65. 65.

    O Ojjela and N Kumar Can. J. Phys.93 880 (2015)

    ADS  Article  Google Scholar 

  66. 66.

    X Si, L Zheng, P Lin, X Zhang and Y Zhang Int. J. Heat Mass Transf.67 885 (2013)

    Article  Google Scholar 

  67. 67.

    X Si, M Pan, L Zheng, J Zhou and L Li Boundary Value Problems2016 176 (2016)

    Article  Google Scholar 

  68. 68.

    K P Madasu and T Bucha Indian J. Phys.. https://doi.org/10.1007/s12648-020-01759-7 (2020)

  69. 69.

    O Ojjela and N N Kumar Alexandria Eng. J.55 1683 (2016)

    Article  Google Scholar 

  70. 70.

    S T Mohyddin, N Ahmed, U Khan and Md M Rashidi Eng. Comput.34 587 (2016)

    Article  Google Scholar 

  71. 71.

    N N Kumar and D Ravinder Commun. Numer. Anal.2019 45 (2019)

    Article  Google Scholar 

  72. 72.

    A Kumar and M D Graham Soft Matter41 10536 (2012)

    Article  Google Scholar 

  73. 73.

    A S Gupta WIREs Nanomed. Nanobiotechnol.8 255 (2016)

    Article  Google Scholar 

  74. 74.

    M Mahoodpour, M Goharkhah and M Ashjaee J. Magn. Magn. Mater.497 166065 (2020)

    Article  Google Scholar 

  75. 75.

    S Shaw, A Sutradhar, P V S N Murthy J. Magn. Magn. Mater.429 227 (2017).

    ADS  Article  Google Scholar 

  76. 76.

    A Gul, I Khan, S Shafie, A Khalid and A Khan Plus One 0141213 (2015).

  77. 77.

    M A Behnam, F Emami, Z Sobhani and A R Dehghanian Iran J. Basic Med. Sci.21 1133 (2018).

    Google Scholar 

  78. 78.

    A E Deatsch and B A Evans J. Magn. Magn. Mater.354 163 (2014)

    ADS  Article  Google Scholar 

  79. 79.

    N A Usov and B Ya Liubimov J. Appl. Phys.112 023901 (2012).

    ADS  Article  Google Scholar 

  80. 80.

    R Kappiyoor, M Liangruksa, R Ganguly and I K Puri J. Appl. Phys.108 094702 (2010).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sachin Shaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sastry, D.R.V.S.R.K., Kumar, N.N., Kameswaran, P.K. et al. Unsteady 3D micropolar nanofluid flow through a squeezing channel: application to cardiovascular disorders. Indian J Phys (2021). https://doi.org/10.1007/s12648-020-01951-9

Download citation

Keywords

  • Magnetohydrodynamics
  • Micropolar fluid
  • Squeezing flow
  • Metallic oxide nanoparticles
  • Shooting method