Investigating bifurcation points of an impact oscillator


Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. [1]

    C Barras New Sci.217 36 (2013)

    ADS  Article  Google Scholar 

  2. [2]

    S J Schiff, K Jerger, D H Duong, T Chang, M L Spano and W L Ditto Nature370 615 (1994)

    ADS  Article  Google Scholar 

  3. [3]

    D W Crevier and M Meister J. Neurophysiol.79 1869 (1998)

    Article  Google Scholar 

  4. [4]

    S N Chowdhury and D Ghosh EPL Europhys. Lett.125 10011 (2019)

    Article  Google Scholar 

  5. [5]

    S N Chowdhury, S Majhi, M Ozer, D Ghosh and M Per. New J. Phys. (2019)

  6. [6]

    B K Bera, S Rakshit, D Ghosh and J Kurths Chaos Interdiscip. J. Nonlinear Sci.29 053115 (2019)

    Article  Google Scholar 

  7. [7]

    K Barati, S Jafari, J C Sprott and V-T Pham Int. J. Bifurc. Chaos26 1630034 (2016)

    Article  Google Scholar 

  8. [8]

    G Baghdadi, S Jafari, J Sprott, F Towhidkhah and M H Golpayegani Commun. Nonlinear Sci. Numer. Simul.20 174 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    Z Wei and I Pehlivan Optoelectron. Adv. Mat. Rapid Commun.6 742 (2012)

    Google Scholar 

  10. [10]

    B Bao, H Wu, L Xu, M Chen and W Hu Int. J. Bifurc. Chaos28 1850019 (2018)

    Article  Google Scholar 

  11. [11]

    Q Xu, Y Lin, B Bao and M Chen Chaos, Solitons & Fractals83 186 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    A Chudzik, P Perlikowski, A Stefanski and T Kapitaniak Int. J. Bifurc. Chaos21 1907 (2011)

    Article  Google Scholar 

  13. [13]

    H Bao, N Wang, B Bao, M Chen, P Jin and G Wang Commun. Nonlinear Sci. Numer. Simul.57 264 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    M Chen, M Sun, B Bao, H Wu, Q Xu and J Wang Nonlinear Dyn.91 1395 (2018)

    Article  Google Scholar 

  15. [15]

    B Bao, A Hu, H Bao, Q Xu, M Chen and H Wu Complexity2018 (2018)

  16. [16]

    A Misra, D Ghosh and A R Chowdhury Phys. Lett. A372 1469 (2008)

    ADS  Article  Google Scholar 

  17. [17]

    A J Veraart, E J Faassen, V Dakos, E H van Nes, M Lürling and M Scheffer Nature481 357 (2012)

    ADS  Article  Google Scholar 

  18. [18]

    A Bayani, F Hadaeghi, S Jafari and G Murray Chronobiol. Int.34 235 (2017)

    Article  Google Scholar 

  19. [19]

    I A van de Leemput, M Wichers, A O J Cramer, D Borsboom, F Tuerlinckx, P Kuppens, et al Proc. Natl. Acad. Sci.111 87 (2014)

    ADS  Article  Google Scholar 

  20. [20]

    M Scheffer, S R Carpenter, T M Lenton, J Bascompte, W Brock, V Dakos, et al Science338 344 (2012)

    ADS  Article  Google Scholar 

  21. [21]

    R C Hilborn Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, Oxford) (2000)

    Google Scholar 

  22. [22]

    V Dakos and F Soler-Toscano Ecol. Complex.32 144 (2017)

    Article  Google Scholar 

  23. [23]

    J Ma and J Tang Nonlinear Dyn.89 1569 (2017)

    Article  Google Scholar 

  24. [24]

    F Nazarimehr, S Jafari, S M R Hashemi Golpayegani, M Perc and J C Sprott Chaos28 073102 (2018)

  25. [25]

    J Ma and J Tang Sci. China Technol. Sci.58 2038 (2015)

    ADS  Article  Google Scholar 

  26. [26]

    V Dakos and J Bascompte Proc. Natl. Acad. Sci.111 17546 (2014)

    ADS  Article  Google Scholar 

  27. [27]

    V Dakos, M Scheffer, E H van Nes, V Brovkin, V Petoukhov and H Held Proc. Natl. Acad. Sci.105 14308 (2008)

    ADS  Article  Google Scholar 

  28. [28]

    H Gritli and S Belghith J. Frankl. Inst.355 9150 (2018)

    Article  Google Scholar 

  29. [29]

    H Gritli and S Belghith Mech. Mach. Theory124 1 (2018)

    Article  Google Scholar 

  30. [30]

    Y Liu and J P Chávez Physica D348 1 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    W Chin, E Ott, H E Nusse and C Grebogi Phys. Rev. E50 4427 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    E Pavlovskaia, D C Hendry and M Wiercigroch Int. J. Mech. Sci.91 110 (2015)

    Article  Google Scholar 

  33. [33]

    L Zhang, H Jiang and Y Liu. Shock Vib.2018 (2018)

  34. [34]

    B Blazejczyk-Okolewska and T Kapitaniak Chaos Solitons Fractals7 1455 (1996)

    ADS  Article  Google Scholar 

  35. [35]

    H Gritli, N Khraief and S Belghith Commun. Nonlinear Sci. Numer. Simul.17 4356 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    H Gritli and S Belghith Commun. Nonlinear Sci. Numer. Simul.47 308 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    J Ing, E Pavlovskaia, M Wiercigroch and S Banerjee Physica D239 312 (2010)

    ADS  Article  Google Scholar 

  38. [38]

    A N Pisarchik and U Feudel Phys. Rep.540 167 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    S Jafari, S Dehghan, G Chen, S T Kingni and K Rajagopal Chaos Solitons Fractals112 135 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    F Nazarimehr, S Jafari, S M R H Golpayegani and J Sprott Nonlinear Dyn.88 1493 (2017)

    Article  Google Scholar 

  41. [41]

    A Wolf, J B Swift, H L Swinney and J A Vastano Physica D16 285 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    J C Sprott Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific, Singapore) (2010)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. T. Pham.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Nazarimehr, F., Alsaadi, F.Z. et al. Investigating bifurcation points of an impact oscillator. Indian J Phys (2020).

Download citation


  • Impact oscillator
  • Bifurcation point
  • Tipping point indicator
  • Chaos
  • Attractors