Influence of a magnetic field on Rashba spin–orbit interaction in an anisotropic quantum dot


The influence of a magnetic field on the Rashba spin–orbit interaction in an anisotropic quantum dot is theoretically studied, and the expression of the ground state energy of a magnetopolaron is obtained with the Pekar variational method. The ground state energy of the magnetopolaron splits into two branches due to the Rashba effect, and the splitting appears saturated phenomenon with increasing the transverse and longitudinal effective confinement lengths. Because the contribution of the magnetic field cyclotron resonance frequency to the Rashba spin–orbit splitting is a positive value, the energy spacing becomes larger as the magnetic field cyclotron resonance frequency increases. Due to the spin–orbit coupling interaction, the energy splits at zero magnetic field. The total energy is reduced due to the presence of phonons. Therefore, the polaron state is more stable than the bare electron state, and the polaron energy splitting is more stable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. [1]

    E I Rashba and AI L Efros Phys Rev Lett. 91 126405 (2003)

  2. [2]

    S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnar, M L Roukes, A Y Chtchelkanova and D M Treger Science.294 1488 (2001)

    ADS  Article  Google Scholar 

  3. [3]

    F Chi, L Liu, and L Sun Chin Phys B.26 037304 (2017)

    ADS  Article  Google Scholar 

  4. [4]

    F Chi and L -M Liu Int J Theor Phys. 57 562 (2018)

    Article  Google Scholar 

  5. [5]

    F Chi and L –L Sun Chin Phys Lett.33 117201 (2016)

    ADS  Article  Google Scholar 

  6. [6]

    Y J Chen, H T Song and J L Xiao Indian J Phys. 92 587 (2018)

    ADS  Article  Google Scholar 

  7. [7]

    Y J Chen, H T Song and J L Xiao Superlattices Microstruct. 118 92 (2018)

  8. [8]

    Y J Chen and X Wang Int J Theor Phys. 57 3540 (2018)

    ADS  Article  Google Scholar 

  9. [9]

    Y J Chen and P Y Zhang J Low Temp Phys. 194 262 (2019)

    ADS  Article  Google Scholar 

  10. [10]

    S Datta and B Das Appl Phys Lett. 56 665 (1990)

    ADS  Article  Google Scholar 

  11. [11]

    Y J Chen, W F Liu and F L Shao Physica E. 110 15 (2019)

    ADS  Article  Google Scholar 

  12. [12]

    Y J Chen, C F Cui and H T Song Physica E. 111 130 (2019)

    ADS  Article  Google Scholar 

  13. [13]

    J Lee, H N Specror J Appl Phys. 99 113708 (2006)

    ADS  Article  Google Scholar 

  14. [14]

    A M Babayev, S Cakmaktepe and D T Altug J Opto Biom. 1 137 (2009)

  15. [15]

    S S Li and J B Xia Nano Res Lett. 4 178 (2009)

    Article  Google Scholar 

  16. [16]

    J P Stanley, N Pattinson, C J Lambert and J H Jefferson Physica E. 20 433 (2004)

  17. [17]

    P Mokhtari, G Rezaeiand and A Z Amani Superlattices Microstruct. 106 1 (2017)

  18. [18]

    F M Peeters, X G Wu, J T Devreese Phys Rev B33 3926 (1986)

  19. [19]

    S P Shan, S H Chen and J L Xiao J Low Temp Phys, 176 93 (2014)

    ADS  Article  Google Scholar 

Download references


This work was supported by Natural Science Foundation of Fuian Province (Grant No. 2019J01797).

Author information



Corresponding author

Correspondence to Shu-Ping Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Chen, S., Zhuang, R. et al. Influence of a magnetic field on Rashba spin–orbit interaction in an anisotropic quantum dot. Indian J Phys (2020).

Download citation


  • Rashba effect
  • Magnetic field
  • Anisotropic quantum dot