A theoretical calculation of atomic parameters for the transitions of Si II

Abstract

Energy levels, wavelengths, transition probabilities, oscillator strengths and line strengths of transitions between computed levels are reported for Si II by using the multiconfiguration Dirac–Hartree–Fock method. The contributions of Breit interaction and quantum electrodynamics correction are taken into consideration. Comprehensive comparisons are made with available experimental and theoretical values, and the accuracy of the present results is assessed to be better than that of other values, which is much closer to the experimental values. The atomic structure parameters of some higher excited states that have no other theoretical values are also calculated and listed in this paper. We came to the conclusion that the contributions of Breit interaction and quantum electrodynamics correction cannot be ignored for high-precision excitation and transition energy calculations.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    K G Carpenter et al. Astrophys. J.L45 377 (1991)

    Google Scholar 

  2. [2]

    P L Dufton, A E Kingston Astrophys. J.289 844 (1985)

    ADS  Article  Google Scholar 

  3. [3]

    P G Judge, K G Carpenter, G M Harper Mon. Not. R. Astron. Soc.253 123 (1991)

    ADS  Article  Google Scholar 

  4. [4]

    F P Keenan, J W Cook, P L Dufton, et al. Astrophys. J. 387 726 (1992)

    ADS  Article  Google Scholar 

  5. [5]

    S S Tayal J. Phys. B At. Mol. Phys.40 2551 (2007)

  6. [6]

    E Charro, I Martín Astrophys. J. Suppl. Ser. 126 551 (2000)

    ADS  Article  Google Scholar 

  7. [7]

    W Hofmann Zeitschrift Für Naturforschung A.24 990 (1969)

    ADS  Google Scholar 

  8. [8]

    L J Curtis, W H Smith Phys. Rev. A. 9 1537 (1974)

    ADS  Article  Google Scholar 

  9. [9]

    B D Savage and G M Lawrence Astrophys. J.146 940 (1996)

    ADS  Article  Google Scholar 

  10. [10]

    P L Dufton, F P Keenan, A Hibbert, et al Mon. Not. R. Astron. Soc.253 474 (1991).

    ADS  Article  Google Scholar 

  11. [11]

    S D Bergeson, J E Lawler Astrophys. J.414 L137 (1993)

    ADS  Article  Google Scholar 

  12. [12]

    R M Schectman, H S Povolny and L J Curtis Astrophys. J.504 921 (1998)

    ADS  Article  Google Scholar 

  13. [13]

    A G Calamai, P L Smith and S D Bergeson Astrophys. J. Lett.415 L59 (1993)

    ADS  Article  Google Scholar 

  14. [14]

    H Nussbaumer Astron. Astrophys.58 291 (1977)

    ADS  Google Scholar 

  15. [15]

    D Luo, A K Pradhan and J M Shull Astrophys. J.335 498 (1988)

    ADS  Article  Google Scholar 

  16. [16]

    P L Dufton, F P Keenan, A Hibbert, P C Ojha and R P Stafford Astrophys. J.387 414 (1992)

    ADS  Article  Google Scholar 

  17. [17]

    W Eissner, M Jones and H Nussbaumer Comput. Phys. Commun.8 539 (1974)

    Article  Google Scholar 

  18. [18]

    P L Dufton, A Hibbert, A E Kingston and J A Tully Mon. Not. R. Astron. Soc.202 145 (1983)

    ADS  Article  Google Scholar 

  19. [19]

    A Hibbert, P C Ojha and R P Stafford J. Phys. B At. Mol. Opt. Phys.25 4153 (1992)

    ADS  Article  Google Scholar 

  20. [20]

    A Hibbert Comput. Phys. Commun.9 141 (1975)

    ADS  Article  Google Scholar 

  21. [21]

    R Glass and A Hibbert Comput. Phys. Commun.16 19 (1978)

    ADS  Article  Google Scholar 

  22. [22]

    S N Nahar At. Data Nucl. Data Tables.68 183 (1998)

    ADS  Article  Google Scholar 

  23. [23]

    K A Berrington, W B Eissner and P H Norrington Comput. Phys. Commun.92 290 (1995)

    ADS  Article  Google Scholar 

  24. [24]

    F C Froese, G Tachiev and A Irimia At. Data & Nucl. Data Tables. 92 607 (2006)

    ADS  Article  Google Scholar 

  25. [25]

    S S Tayal Astrophys. J. Suppl. Ser. 179 534 (2008)

    ADS  Article  Google Scholar 

  26. [26]

    M A Bautista, P Quinet, P Palmeri, et al. Astron. Astrophys. 508 1527 (2009)

    ADS  Article  Google Scholar 

  27. [27]

    K Aggarwal, F Keenan Mon. Not. R. Astron. Soc.442 388 (2014)

    ADS  Article  Google Scholar 

  28. [28]

    J M Shull, T P Snow and D G York. Astrophys. J.246 549 (1981)

    ADS  Article  Google Scholar 

  29. [29]

    B D Van. Astrophys. J. 311 400 (1986)

    ADS  Article  Google Scholar 

  30. [30]

    S Laha, F P Keenan, G J Ferland et al. Mon. Not. R. Astron. Soc.455 3405 (2015)

    ADS  Article  Google Scholar 

  31. [31]

    I P Grant Springer Science & Business Media, New York. (2007)

  32. [32]

    P Jönsson, X He, C F Fischer and I P Grant Comput. Phys. Commun.177 597 (2007).

    ADS  Article  Google Scholar 

  33. [33]

    I P Grant Comput. Phys. Commun.84 59 (1994).

    ADS  Article  Google Scholar 

  34. [34]

    L Sturesson, P Jönsson and C F Fischer Comput. Phys. Commun.177 539 (2007).

    ADS  Article  Google Scholar 

  35. [35]

    F Peng, S Song and G Jiang Phys. Scr.76 501 (2007).

    ADS  Article  Google Scholar 

  36. [36]

    F Hu, G Jiang, W Hong and L H Hao Eur. Phys. J. D49 293 (2008).

    ADS  Article  Google Scholar 

  37. [37]

    C C Sang, Z B Chen, Y Sun, et al. J. Electron Spectrosc. Relat. Phenomena. 230 26 (2019)

    Article  Google Scholar 

  38. [38]

    M Wu, G Bian, X F Li, et al. Can. J. Phys.94 359 (2015).

    ADS  Article  Google Scholar 

  39. [39]

    http://physics.nist.gov

Download references

Acknowledgements

The authors wish to thank P. Jönsson for providing the GRASP2K package for free. This work was supported by the Natural Science Foundation of Anhui Province of China (Grant nos. KJ2018A0588, KJ2019A0879) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant no. 17KJB140025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., He, Z., Hu, F. et al. A theoretical calculation of atomic parameters for the transitions of Si II. Indian J Phys (2020). https://doi.org/10.1007/s12648-020-01771-x

Download citation

Keywords

  • MCDHF
  • Relativistic configuration interaction
  • Wavelengths
  • Transition probabilities
  • Line strengths

PACS Nos.

  • 31.10. + z
  • 32.70.Cs
  • 31.30.Jv
  • 32.10.-f