Analysis of periodic and solitary waves in a magnetosonic quantum dusty plasma


The propagation of nonlinear magnetosonic waves in electron–ion–dust (complex) plasmas has been studied by considering the effects of Bohm potential in the presence of an external magnetic field. By using the quantum hydrodynamic model and applying the reductive perturbation method, the Kadomtsev–Petviashvili (KP) equation is obtained. The compressive structures of magnetosonic solitary waves and periodic travelling waves are studied. The effects of the electron to dust density ratio, the quantum plasma parameter, and the dust equilibrium density on the nonlinear magnetosonic periodic travelling waves are discussed. It is observed that the wave structure is more sensitive to the changes in the ratio of electron to dust densities, as compared to the changes in other physical parameters. The obtained results may be useful for a better understanding of obliquely nonlinear magnetosonic travelling waves of localized structures with a small amplitude in dense magnetized quantum dusty plasmas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. [1]

    P K Shukla and A Mamun Introduction to Dusty Plasma Physics (New York: CRC Press) (2001)

    Google Scholar 

  2. [2]

    H-F Liu, S-Q Wang, Z-H Wang, C-Z Li, L Yao and F-Z Yang Phys. Plasmas18 044501 (2011)

    ADS  Article  Google Scholar 

  3. [3]

    A Abdikian and S Mahmood Phys. Plasmas23 122303 (2016)

    ADS  Article  Google Scholar 

  4. [4]

    G Manfredi Fields Inst. Commun.46 263 (2005)

    Google Scholar 

  5. [5]

    Y Wang, Z Zhou, H Qiu, F Wang and Y Lu Phys. Plasmas19 013704 (2012)

    ADS  Article  Google Scholar 

  6. [6]

    A Abdikian and Z Ehsan Phys. Lett. A381 2939 (2017)

    ADS  Article  Google Scholar 

  7. [7]

    M Akbari-Moghanjoughi IEEE Trans. Plasma Sci.38 3336 (2010)

    ADS  Article  Google Scholar 

  8. [8]

    B Eliasson and P K Shukla Plasma Fusion Res.4 032 (2009)

    ADS  Article  Google Scholar 

  9. [9]

    P K Shukla and B Eliasson Phys. Usp.53 51 (2010)

    ADS  Article  Google Scholar 

  10. [10]

    M Hossen and A Mamun Braz. J. Phys.45 200 (2015)

    ADS  Article  Google Scholar 

  11. [11]

    H Ur-Rehman, S Mahmood and S Hussain Phys. Plasmas24 012106 (2017)

    ADS  Article  Google Scholar 

  12. [12]

    G Mandal, U N Ghosh and M Asaduzzaman IEEE Trans. Plasma Sci.45 148 (2017)

    ADS  Article  Google Scholar 

  13. [13]

    W Masood, H Shah, A Mushtaq and M Salimullah J. Plasma Phys.75 217 (2009)

    ADS  Article  Google Scholar 

  14. [14]

    S Hussain, A Abdykian and S Mahmood Contrib. Plasma Phys.59 1 (2018)

    Google Scholar 

  15. [15]

    S El-Labany, W El-Taibany and A Atteya Phys. Lett. A382 412 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    A Saha and P Chatterjee Astrophys. Space Sci.350 631 (2014)

    ADS  Article  Google Scholar 

  17. [17]

    A Saha Nonlinear Dyn.87 2193 (2016)

    Article  Google Scholar 

  18. [18]

    A Abdikian Contrib. Plasma Phys.59 20 (2019)

    Article  Google Scholar 

  19. [19]

    J Tamang, K Sarkar and A Saha Phys. A505 18 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    A Saha and J Tamang Phys. Plasmas24 082101 (2017)

    ADS  Article  Google Scholar 

  21. [21]

    M Afify, W Moslem and M Hassouba Phys. Plasmas25 052116 (2018)

    ADS  Article  Google Scholar 

  22. [22]

    A Saha, P Chatterjee and N Pal J. Plasma Phys.81 905810509 (2015)

    Article  Google Scholar 

  23. [23]

    A Saha and P Chatterjee Eur. Phys. J. Plus130 1 (2015)

    Article  Google Scholar 

  24. [24]

    S N Chow and J K Hale Methods of Bifurcation Theory (Springer, New York, 1982)

    Google Scholar 

  25. [25]

    T Kaladze and S Mahmood Phys. Plasmas21 032306 (2014)

    ADS  Article  Google Scholar 

  26. [26]

    E El-Shamy Phys. Rev. E91 033105 (2015)

    ADS  Article  Google Scholar 

  27. [27]

    E El-Shamy, R Al-Chouikh, A El-Depsy and N Al-Wadie Phys. Plasmas23 122122 (2016)

    ADS  Article  Google Scholar 

  28. [28]

    J Tamang and A Saha Z. Naturforsch.A 1 (2019)

  29. [29]

    A Saha and J Tamang Adv. Space Res.63 1596 (2019)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hilmi Demiray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demiray, H., Abdikian, A. Analysis of periodic and solitary waves in a magnetosonic quantum dusty plasma. Indian J Phys (2020).

Download citation


  • Dusty plasma
  • Periodic waves
  • Magnetosonic solitary waves
  • Kadomtsev–Petviashvili equation


  • 52.27.Lw
  • 52.35.Bj
  • 52.35Mw
  • 47.20.Ky
  • 52.35.Sb