Skip to main content
Log in

Deuterated interstellar and circumstellar molecules: D/H ratio and dominant formation processes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

There are several constraints associated with the different models used in accounting for the D/H ratio observed of singly and multiply deuterated interstellar and circumstellar molecular species. Thermodynamically, the most distinctive difference between a molecule and its deuterated analogue is the zero point energy (ZPE). Applying high level quantum chemical calculations, the ZPE for all H-containing and their corresponding D-analogues for all interstellar/circumstellar molecular species considered in this study are determined. From the difference in the ZPE between the H-containing and the corresponding D-analogue, Boltzmann factor is computed for all the systems using the excitation temperature/molecular cloud temperature for the known D-molecules and a range of temperature for others. From the results, there is a direct correlation between the Boltzmann factors and the D/H ratios. Pronounced deuterium fractionation occurs at larger values of Boltzmann factor resulting in the observed high D/H ratios. Increased deuterium fractionation at low temperature suggests that grain surface reactions are the major formation processes for deuterated molecules. This implies that at lower temperature (higher Boltzmann factor), the exchange reaction involving deuterium or deuterium fractionation is much pronounced resulting in the distribution and redistribution of deuterium among various species. The implications of these results and the possibility of detecting more D-molecules are discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A C Cheung, D M Rank, C H Townes, D D Thornton and W J Welch Phys Rev Lett 25 1701 (1968)

    ADS  Google Scholar 

  2. A C Cheung, D M Rank, C H Townes, D D Thornton and W J Welch Nature 221 626–628 (1969)

    ADS  Google Scholar 

  3. L E Synder, D Buhl, B Zuckerman and P Palmer Phys Rev Lett 22 679 (1969)

    ADS  Google Scholar 

  4. R W Wilson, K B Jefferts and A A Penzias ApJ 161 L43 (1970)

    ADS  Google Scholar 

  5. J A Ball, C A Gottlieb, A E Lilley and H E Radford ApJ 162 L203 (1970)

    ADS  Google Scholar 

  6. C P Endres, S Schlemmer, P Schilke, J Stutzki and H S P Müller J. Mol. Spectrosc 327 95 (2016)

    ADS  Google Scholar 

  7. http://www.astrochymist.org/astrochymist_ism.html. Accessed in September 2018.

  8. E E Etim and E Arunan Planex Newletter 5 16 (2015)

    Google Scholar 

  9. (a) A J Markwick, S B Charnley, H M Butner and T J Millar ApJ 627 L117 (2005). (b) G Wlodarczak Journal of Molecular Structure 347 131 (1995)

  10. B E Turner and B Zuckerman ApJ 225 L75 (1978)

    ADS  Google Scholar 

  11. B E Turner ApJ 362 L29 (1990)

    ADS  Google Scholar 

  12. S Lacour, M K Andre and P Sonnentrucker A&A 430 967 (2005)

    ADS  Google Scholar 

  13. M Gerin, F Combes and G Wlodarczak ApJ 259 L35 (1992a)

    Google Scholar 

  14. J Cernicharo, B Tercero and A Fuente ApJ 771 L10 (2013)

    ADS  Google Scholar 

  15. D C Lis, E Roueff and M Gerin ApJ 571 L55 (2002)

    ADS  Google Scholar 

  16. K B Jefferts, A A Penzias and R W Wilson, ApJ 179 L57 (1973)

    ADS  Google Scholar 

  17. J E Lee and E A Bergin ApJ 799 104 (2015)

    ADS  Google Scholar 

  18. H Roberts, G A Fuller, T J Millar, J Hatchell and J V Buckle A&A 381 1026 (2002)

    ADS  Google Scholar 

  19. H Roberts and T J Millar A&A 471 849 (2007)

    ADS  Google Scholar 

  20. T J Millar Astronomy and Geophysics 46, 2, 2.29 2.32 (2005) https://doi.org/10.1111/j.1468-4004.2005.46229.x

  21. C Ceccarelli Planetary and Space Science 50 1267 (2002)

    ADS  Google Scholar 

  22. L Spitzer, J F Drake and E B Jenkins ApJ 181 L116 (1973)

    ADS  Google Scholar 

  23. V Taquet, C Ceccarelli and C Kahane ApJL 748 L3

  24. M Emprechtinger, P Caselli, N H Volgenau, J Stutzki and M C Wiedner A&A 493 89 (2009)

    ADS  Google Scholar 

  25. L Dore, P Caselli, S Beninatil, T Bourke, P C Myers and G Cazzoli1 A&A 413 1177 (2004)

  26. B Parise, C Ceccarelli, A G G M Tielens, A Castets, E Caux, B Lefloch and S Maret A&A 453 949 (2006)

    ADS  Google Scholar 

  27. D Rehder, Chemistry in Space. Wiley, Weinheim, Germany (2010)

    Google Scholar 

  28. T J Millar, H Roberts, A J Markwick and S B Charnley Philos. Trans. R. Soc. Lond. 358 2535 (2000)

    ADS  Google Scholar 

  29. A G G M Tielens A&A 119 177 (1983)

    ADS  Google Scholar 

  30. S Kong, P Caselli, J C Tan, V Wakelam and O. Sipila, Submitted, arXiv:1312.0971[astro-ph.SR] (2015)

  31. P M Solomon and N J Woolf ApJ 180 L89 (1973)

    ADS  Google Scholar 

  32. M J Frisch, G W Trucks and H B Schlegel G09:RevC.01, Gaussian, Inc., Wallingford CT (2009)

  33. L A Curtiss, P C Redfern and K Raghavachari JChPh 126 084108 (2007a)

    ADS  Google Scholar 

  34. L A Curtiss, P C Redfern and K Raghavachari, JChPh 127 124105 (2007b)

    ADS  Google Scholar 

  35. E E Etim and E Arunan European Physical Journal Plus 131 448 (2016)

    ADS  Google Scholar 

  36. E E Etim and E Arunan, Advances in Space Research 59 1161 (2017)

    ADS  Google Scholar 

  37. E E Etim, P Gorai, A Das, S K Chakrabati and E Arunan The Astrophysical Journal 832 144 (2016)

    ADS  Google Scholar 

  38. E E Etim, E J Inyang, O A Ushie, I E Mbakara, C Andrew and U Lawal FUW Trends in Science and Technology Journal 2 665 (2017)

    Google Scholar 

  39. E E Etim, G Gorai, A Das and E Arunan Astrophysics and Space Science 363 6 (2018a)

    ADS  Google Scholar 

  40. E E Etim, P Gorai, A Das, S K Chakrabarti and E Arunan, Advances in Space Research 61 2870–2880 (2018b)

    ADS  Google Scholar 

  41. J M L Martin and G de Oliveira J Chem Phys 111 1843 (1999)

    Google Scholar 

  42. A Coutens, C Vastel, and E Caux A&A 539 132 (2012)

    Google Scholar 

  43. H M Butner, S B Charnley and C Ceccarelli ApJ 659 L137 (2007)

    ADS  Google Scholar 

  44. C Vastel, T G Phillips, C Ceccarelli and J Pearson ApJ 593 L97 (2003)

    ADS  Google Scholar 

  45. R Stark, F van der Tak and E F van Dishoeck ApJ 521 L67 (1999)

    ADS  Google Scholar 

  46. E van Dishoeck, G A Blake, D J Jansen and T D Groesbeck ApJ 447 760 (1995)

    ADS  Google Scholar 

  47. N Marcelino, J Cernicharo, E Roueff, M Gerin and R Mauersberger ApJ 620 308 (2005)

    ADS  Google Scholar 

  48. J Hatchell A&A 403 L25 (2003)

    ADS  Google Scholar 

  49. L Loinard, A Castets, C Ceccarelli, E Caux and A G G M Tielens ApJ 552 L163 (2001)

    ADS  Google Scholar 

  50. N Sakai, T Sakai, T Hirota and S Yamamoto ApJ 702 1025 (2009)

  51. D A Howe, T J Millar, P Schike and C M Walmsley Mont. Not. R. Astron. Soc. 267 59 (1994)

    ADS  Google Scholar 

  52. J M Macleod, L W Avery and N W Broten ApJ 251 L33 (1981)

    ADS  Google Scholar 

  53. B E Turner ApJ 347 L39 (1989)

    ADS  Google Scholar 

  54. B Praise, A Castets and E Herbst A&A 416 159 (2004)

    ADS  Google Scholar 

  55. L H Coudert, B J Drouin and B Tercero ApJ 779 119 (2013)

    Google Scholar 

  56. M Gerin, F Combes, G Wlodarczak, P Encrenaz and C Laurent ApJ 253 L29 (1992b)

    Google Scholar 

Download references

Acknowledgements

EEE acknowledges a research fellowship from the Indian Institute of Science, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Etim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etim, E.E., Akpan, N.I., Adelagun, R.A.O. et al. Deuterated interstellar and circumstellar molecules: D/H ratio and dominant formation processes. Indian J Phys 95, 779–795 (2021). https://doi.org/10.1007/s12648-020-01747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01747-x

Keywords

PACS Nos.

Navigation