Effect of Landau damping on ion acoustic solitary waves in a collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons

Abstract

A Korteweg–de Vries (KdV) equation including the effect of linear Landau damping of electrons is derived to study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized plasma consisting of warm adiabatic ions and two species of electrons at different temperatures. It is found that the coefficient of the nonlinear term of this KdV-like evolution equation vanishes along different family of curves in different parameter planes. In this context, a modified KdV (MKdV) equation including the effect of linear Landau damping of electrons describes the nonlinear behaviour of ion acoustic waves. Again, the coefficients of the nonlinear terms of the KdV and MKdV-like evolution equations are simultaneously equal to zero along a family of curves in the parameter plane. In this situation, we have derived a further modified KdV (FMKdV) equation including the effect of linear Landau damping of electrons. The multiple time scale method has been applied to obtain the solitary wave solution of the evolution equations having the nonlinear term \( \left( \phi ^{(1)}\right) ^{r}\frac{\partial \phi ^{(1)}}{\partial \xi }\), where \(\phi ^{(1)}\) is the first-order perturbed electrostatic potential and \(r =1,2,3\). The amplitude of the ion acoustic solitary wave decreases with time for all \(r =1,2,3\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    P O Dovner, A I Eriksson, R Boström and B Holback Geophys. Res. Lett. 21 1827 (1994)

    ADS  Google Scholar 

  2. [2]

    R E Ergun, C W Carlson, J P McFadden, F S Mozer, G T Delory, W Peria, C C Chaston, M Temerin, R Elphic, R Strangeway et al. Geophys. Res. Lett. 25 2025 (1998)

    ADS  Google Scholar 

  3. [3]

    R E Ergun, C W Carlson, J P McFadden, F S Mozer, G T Delory, W Peria, C C Chaston, M Temerin, R Elphic, R Strangeway et al. Geophys. Res. Lett. 25 2061 (1998)

    ADS  Google Scholar 

  4. [4]

    G T Delory, R E Ergun, C W Carlson, L Muschietti, C C Chaston, W Peria, J P McFadden and R Strangeway Geophys. Res. Lett. 25 2069 (1998)

    ADS  Google Scholar 

  5. [5]

    R Pottelette, R E Ergun, R A Treumann, M Berthomier, C W Carlson, J P McFadden and I. Roth Geophys. Res. Lett. 26 2629 (1999)

    ADS  Google Scholar 

  6. [6]

    J P McFadden, C W Carlson, R E Ergun, F S Mozer, L Muschietti, I Roth and E Moebius J. Geophys. Res. 108 8018 (2003)

    Google Scholar 

  7. [7]

    R Boström, G Gustafsson, B Holback, G Holmgren, H Koskinen and P.Kintner Phys. Rev. Lett. 61 82 (1988)

    ADS  Google Scholar 

  8. [8]

    R Boström IEEE Trans. Plasma Sci. 20 756 (1992)

    ADS  Google Scholar 

  9. [9]

    R A Cairns, A A Mamum, R Bingham, R Boström, R O Dendy, C M C Nairn and P K Shukla Geophys. Res. Lett. 22 2709 (1995)

    ADS  Google Scholar 

  10. [10]

    S Dalui, A Bandyopadhyay and K P Das Phys. Plasmas 24 042305 (2017)

    ADS  Google Scholar 

  11. [11]

    K Nishihara and M Tajiri J. Phys. Soc. Jpn. 50 4047 (1981)

    ADS  Google Scholar 

  12. [12]

    R Bharuthram and P K Shukla Phys. Fluids 29 3214 (1986)

    ADS  Google Scholar 

  13. [13]

    S A Islam, A Bandyopadhyay and K P Das J. Plasma Phys. 74 765 (2008)

    ADS  Google Scholar 

  14. [14]

    A E Dubinov and M A Sazonkin Plasma Phys. Rep. 35 14 (2009)

    ADS  Google Scholar 

  15. [15]

    H R Pakzad and K Javidan Indian J. Phys. 83 349 (2009)

    ADS  Google Scholar 

  16. [16]

    H R Pakzad and M Tribeche Astrophys. Space Sci. 334 45 (2011)

    ADS  Google Scholar 

  17. [17]

    O R Rufai, R Bharuthram, S V Singh and G S Lakhina Phys. Plasmas 19 122308 (2012)

    ADS  Google Scholar 

  18. [18]

    K Javidan and H R Pakzad Indian J. Phys. 87 83 (2013)

    ADS  Google Scholar 

  19. [19]

    M Shahmansouri B Shahmansouri and D Darabi Indian J. Phys. 87 711 (2013)

    ADS  Google Scholar 

  20. [20]

    P Eslami M Mottaghizadeh and H R Pakzad Indian J. Phys. 87 1047 (2013)

    ADS  Google Scholar 

  21. [21]

    M A H Khaled Indian J. Phys. 88 647 (2014)

    ADS  Google Scholar 

  22. [22]

    S S Ghosh and A N Sekar Iyengar Phys. Plasmas 21 082104 (2014)

    ADS  Google Scholar 

  23. [23]

    O R Rufai, R Bharuthram, S V Singh and G S Lakhina Phys. Plasmas 21 082304 (2014)

    ADS  Google Scholar 

  24. [24]

    S Devanandhan, S V Singh, G S Lakhina and R Bharuthram Commun. Nonlinear Sci. Numer. Simul. 22 1322 (2015)

    ADS  MathSciNet  Google Scholar 

  25. [25]

    S V Singh J. Plasma Phys. 81 905810315 (2015)

    Google Scholar 

  26. [26]

    S V Singh and G S Lakhina Commun. Nonlinear Sci. Numer. Simul. 23 274 (2015)

    ADS  MathSciNet  Google Scholar 

  27. [27]

    M A Hossen and A A Mamun IEEE Trans. Plasma Sci. 44 643 (2016)

    Google Scholar 

  28. [28]

    S V Singh, S Devanandhan, G S Lakhina and R Bharuthram Phys. Plasmas 23 082310 (2016)

    ADS  Google Scholar 

  29. [29]

    S Dalui, A Bandyopadhyay and K P Das Phys. Plasmas 24 102310 (2017)

    ADS  Google Scholar 

  30. [30]

    M Y Yu and H Luo Phys. Plasmas 15 024504 (2008)

    ADS  Google Scholar 

  31. [31]

    A Vlasov J. Phys. (U.S.S.R.) 9 25 (1945)

    MathSciNet  Google Scholar 

  32. [32]

    L D Landau J. Phys. (U.S.S.R.) 10 25 (1946)

    Google Scholar 

  33. [33]

    E Ott and R N Sudan Phys. Fluids 12 2388 (1969)

    ADS  MathSciNet  Google Scholar 

  34. [34]

    J W VanDam and T Taniuti J. Phys. Soc. Jpn. 35 897 (1973)

    ADS  Google Scholar 

  35. [35]

    J D Meiss and P J Morrison Phys. Fluids 26 983 (1983)

    ADS  Google Scholar 

  36. [36]

    M Tajiri and K Nishihara J. Phys. Soc. Jpn. 54 572 (1985)

    ADS  Google Scholar 

  37. [37]

    A Bandyopadhyay and K P Das Phys. Plasmas 9 465 (2002)

    ADS  Google Scholar 

  38. [38]

    S Ghosh and R Bharuthram Astrophys. Space Sci. 331 163 (2011)

    ADS  Google Scholar 

  39. [39]

    K M Li L F Kang C Y Wang X Li and W Z Huang Indian J. Phys. 88 1207 (2014)

    ADS  Google Scholar 

  40. [40]

    A P Misra and A Barman Phys. Plasmas 22 073708 (2015)

    ADS  Google Scholar 

  41. [41]

    A Barman and A P Misra Phys. Plasmas 24 052116 (2017)

    ADS  Google Scholar 

  42. [42]

    Y Saitou and Y Nakamura Phys. Lett. A 343 397 (2005)

    ADS  Google Scholar 

  43. [43]

    Y Ghai, N S Saini and B Eliasson Phys. Plasmas 25 013704 (2018)

    ADS  Google Scholar 

  44. [44]

    F Verheest and S R Pillay Phys. Plasmas 15 013703 (2008)

    ADS  Google Scholar 

  45. [45]

    D Debnath, A Bandyopadhyay and K P Das Phys. Plasmas 25 033704 (2018)

    ADS  Google Scholar 

  46. [46]

    J Weiland Y H Ichikawa and H Wilhelmsson Phys. Scr. 17 517 (1978)

    ADS  Google Scholar 

  47. [47]

    S Wolfram The Mathematica ® Book, Version 4 (Cambridge university press Cambridge, 1999)

Download references

Acknowledgements

The authors are grateful to all reviewers for their constructive comments, without which this paper could not have been written in its present form. The authors are grateful to Prof. Basudev Ghosh, Department of Physics, Jadavpur University, for his helpful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bandyopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Coefficients of Eq. (76):

$$\begin{aligned} J_{{{\mathrm{c0}}}} = \int _{-\infty }^{+\infty } \frac{\partial j_{{{\mathrm{c0}}}}}{\partial v_{||}^{2}}{{\mathrm{d}}}v_{||},\;Z_{{{\mathrm{c0}}}} = \frac{\partial f_{{{\mathrm{c0}}}}}{\partial v_{||}^{2}}\bigg |_{v_{||}=0}, \end{aligned}$$
(107)

where \(J = F\), G, H, K for \(j = f\), g, h, k, respectively.

Appendix 2

Coefficients of Eq. (78):

$$\begin{aligned} J_{{{\mathrm{s0}}}} = \int _{-\infty }^{+\infty } \frac{\partial j_{{{\mathrm{s0}}}}}{\partial v_{||}^{2}}{{\mathrm{d}}}v_{||},\;Z_{{{\mathrm{s0}}}} = \frac{\partial f_{{{\mathrm{s0}}}}}{\partial v_{||}^{2}}\bigg |_{v_{||}=0}, \end{aligned}$$
(108)

where \(J = F\), G, H, K for \(j = f\), g, h, k, respectively.

Appendix 3

Method of finding \(I_{r}\) associated with Eqs. (103) and (104):

$$\begin{aligned} I_{r} = \mathcal {P} \int \limits _{-\infty }^{+\infty }\int \limits _{-\infty }^{+\infty } [{{\text{ sech } }}{} \textit{X} ]^{\frac{2}{r}} \frac{\partial [{{\text{ sech } }}{} \textit{X}' ]^{\frac{2}{r}}}{\partial X'} \frac{{{\mathrm{{d}}}}X {{\mathrm{{d}}}}X'}{X-X'} . \end{aligned}$$
(109)

Now \(I_{r}\) can be written as

$$\begin{aligned} I_{r} = - \int _{-\infty }^{\infty } \frac{\partial [{{\text{ sech } }} \textit{z} ]^{\frac{2}{r}}}{\partial z} I_{1r} dz , \end{aligned}$$
(110)

where \(X=z'\), \(X'=z \) and

$$\begin{aligned} I_{1r} = \mathcal {P} \int _{-\infty }^{\infty } \frac{[{{\text{ sech } }} \textit{z}' ]^{\frac{2}{r}} }{z-z'} dz' . \end{aligned}$$
(111)

Using the following known result

$$\begin{aligned} \int _{-\infty }^{0} e^{is(z-z')} ds = \pi \delta (z-z') - i \mathcal {P} \frac{1}{z-z'} , \end{aligned}$$
(112)

form Eq. (112), we get

$$\begin{aligned} \mathcal {P} \frac{1}{z-z'} = \frac{1}{2i} \int _{-\infty }^{\infty } \frac{s}{|s|} e^{is(z-z')} ds . \end{aligned}$$
(113)

Using (113), Eq. (111) can be written as

$$\begin{aligned} I_{1r} = \frac{1}{2i} \int _{-\infty }^{\infty } \frac{s}{|s|} F(s) e^{isz} ds , \end{aligned}$$
(114)

where

$$\begin{aligned} F(s) = \int _{-\infty }^{\infty } [{{\text{ sech } }}{} \textit{z} ]^{\frac{2}{r}} e^{-isz} dz . \end{aligned}$$
(115)

Therefore, Eq. (110) can be written as

$$\begin{aligned} I_{r} = \int _{0}^{\infty } s [F(s)]^{2} ds . \end{aligned}$$
(116)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalui, S., Bandyopadhyay, A. Effect of Landau damping on ion acoustic solitary waves in a collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons. Indian J Phys 95, 367–381 (2021). https://doi.org/10.1007/s12648-020-01731-5

Download citation

Keywords

  • Nonthermal electrons
  • Ion acoustic wave
  • Landau damping
  • Modified Korteweg–de Vries equation
  • Solitary wave solution

PACS No.

  • 52.35.Fp
  • 52.35.Mw
  • 52.35.Sb