Stoichiometry-related defect structure in lithium niobate and lithium tantalate

Abstract

Congruently grown LiNbO3 (LiTaO3) is known to be highly defective due to its significant Li2O deficiency. We present in this work a comparative study between normal LiNbO3 (LiTaO3) and ilmenite structural LiNbO3 (LiTaO3). Namely, the normal cation stacking sequence is replaced by ilmenite ordering ‘…Nb (Ta) Li vacancy Li Nb (Ta) vacancy Nb (Ta) Li vacancy Li Nb (Ta) vacancy…’. From Safaryan’s approach which combines a ferroelectric phase transition theory and vacancy models, we calculated the Curie temperature in ilmenite LiNbO3 (LiTaO3). We have shown that ilmenite structural LiNbO3 (LiTaO3) is in excellent agreement with the result of the experiment compared to normal LiNbO3 (LiTaO3).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. [1]

    M Paul, M Tabuchi and A R West Chem. Mater. 9 3206 (1997)

    Article  Google Scholar 

  2. [2]

    M E Lines and A M Glass, Principles (Oxford: Clarendon Press) (1977)

  3. [3]

    X Zhang, D Xue and K Kitamura Mater. Sci. Eng. B 120 21 (2005)

    Article  Google Scholar 

  4. [4]

    X Zhang, D Xue and K Kitamura Mater. Sci. Eng. B 120 27 (2005)

    Article  Google Scholar 

  5. [5]

    H Fay, W J Alford and H M Dess Appl. Phys. Lett. 12 89 (1968)

    ADS  Article  Google Scholar 

  6. [6]

    P Lerner, C Legras and J P Dumas J. Cryst. Growth 3 231 (1968)

  7. [7]

    G E Peterson and A Carnevale J. Chem. Phys. 56 4848 (1972)

    ADS  Article  Google Scholar 

  8. [8]

    C S Abrahams and P Marsh Acta Crystallogr. Sect. B 42 61 (1986)

    Article  Google Scholar 

  9. [9]

    H Donnerberg, S M Tomlinson, C R A Catlow and O F Schirmer Phys. Rev. B 40 11909 (1989)

    ADS  Article  Google Scholar 

  10. [10]

    N Iyi, K Kitamura, F Izumi, J K Yamamoto, T Hayashi, H Asano and S Kimura J. Solid State Chem. 101 340 (1992)

  11. [11]

    F P Safaryan Phys. Lett. A 255 191 (1999)

  12. [12]

    F P Safaryan, R S Feigelson and A M Petrosyan J. Appl. Phys. 85 8079 (1999)

    ADS  Article  Google Scholar 

  13. [13]

    N Masaif, S Jebbari, F Bennani, A Jennane and M Hafid Phys. Stat. Solidi (b) 240 640 (2003)

    ADS  Article  Google Scholar 

  14. [14]

    K Maaider, A Jennane, A Khalil and N Masaif Indian J. Phys. 86 575 (2012)

    ADS  Article  Google Scholar 

  15. [15]

    F. Abdi, M.D. Fontana, M. Aillerie and P. Bourson. J. Appl. Phys. A 83 427 (2006)

    ADS  Article  Google Scholar 

  16. [16]

    S Yao, F Zheng, H Liu, J Wang, H Zhang, T Yan, J Wu, Z Xia and X Qin Cryst. Res. Technol. 44 1235 (2009)

    Article  Google Scholar 

  17. [17]

    N Kumada, N Ozawa, F Mut and N Kinomura J. Solid. State Chem. 57 267 (1985)

    ADS  Article  Google Scholar 

  18. [18]

    Y Kong, J Xu, X Chen, C Zhang, W Zhang and G Zhang J. Appl. Phys. 87 4410 (2000)

    ADS  Article  Google Scholar 

  19. [19]

    H Donnerberg J. Solid State Chem. 123 208 (1996)

  20. [20]

    F A Krôger and H J Vink Point Defects in LiNbO3 (New York: Academic Press) (1986)

    Google Scholar 

  21. [21]

    D M Smyth Proceedings of the sixth international symposium on application of ferroelectrics. p 115 (1986)

  22. [22]

    F Bennani, E Husson J. Eur. Ceram. Soc. 21 847 (2001)

    Article  Google Scholar 

  23. [23]

    X Zhang and F Xue J. Phys. Chem. B 111 2587 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Ministry of Higher Education and the National Center for Scientific Research and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Maaider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maaider, K., Masaif, N. & Khalil, A. Stoichiometry-related defect structure in lithium niobate and lithium tantalate. Indian J Phys 95, 275–280 (2021). https://doi.org/10.1007/s12648-020-01696-5

Download citation

Keywords

  • Ferroelectrics
  • Lithium niobate
  • Lithium tantalate
  • Defect structure
  • Vacancy models
  • Curie temperature

PACS Nos.

  • 61.72.-y
  • 61.72.jd
  • 74.62.Dh
  • 77.80.B