Abstract
Congruently grown LiNbO3 (LiTaO3) is known to be highly defective due to its significant Li2O deficiency. We present in this work a comparative study between normal LiNbO3 (LiTaO3) and ilmenite structural LiNbO3 (LiTaO3). Namely, the normal cation stacking sequence is replaced by ilmenite ordering ‘…Nb (Ta) Li vacancy Li Nb (Ta) vacancy Nb (Ta) Li vacancy Li Nb (Ta) vacancy…’. From Safaryan’s approach which combines a ferroelectric phase transition theory and vacancy models, we calculated the Curie temperature in ilmenite LiNbO3 (LiTaO3). We have shown that ilmenite structural LiNbO3 (LiTaO3) is in excellent agreement with the result of the experiment compared to normal LiNbO3 (LiTaO3).
This is a preview of subscription content, access via your institution.




References
- [1]
M Paul, M Tabuchi and A R West Chem. Mater. 9 3206 (1997)
- [2]
M E Lines and A M Glass, Principles (Oxford: Clarendon Press) (1977)
- [3]
X Zhang, D Xue and K Kitamura Mater. Sci. Eng. B 120 21 (2005)
- [4]
X Zhang, D Xue and K Kitamura Mater. Sci. Eng. B 120 27 (2005)
- [5]
H Fay, W J Alford and H M Dess Appl. Phys. Lett. 12 89 (1968)
- [6]
P Lerner, C Legras and J P Dumas J. Cryst. Growth 3 231 (1968)
- [7]
G E Peterson and A Carnevale J. Chem. Phys. 56 4848 (1972)
- [8]
C S Abrahams and P Marsh Acta Crystallogr. Sect. B 42 61 (1986)
- [9]
H Donnerberg, S M Tomlinson, C R A Catlow and O F Schirmer Phys. Rev. B 40 11909 (1989)
- [10]
N Iyi, K Kitamura, F Izumi, J K Yamamoto, T Hayashi, H Asano and S Kimura J. Solid State Chem. 101 340 (1992)
- [11]
F P Safaryan Phys. Lett. A 255 191 (1999)
- [12]
F P Safaryan, R S Feigelson and A M Petrosyan J. Appl. Phys. 85 8079 (1999)
- [13]
N Masaif, S Jebbari, F Bennani, A Jennane and M Hafid Phys. Stat. Solidi (b) 240 640 (2003)
- [14]
K Maaider, A Jennane, A Khalil and N Masaif Indian J. Phys. 86 575 (2012)
- [15]
F. Abdi, M.D. Fontana, M. Aillerie and P. Bourson. J. Appl. Phys. A 83 427 (2006)
- [16]
S Yao, F Zheng, H Liu, J Wang, H Zhang, T Yan, J Wu, Z Xia and X Qin Cryst. Res. Technol. 44 1235 (2009)
- [17]
N Kumada, N Ozawa, F Mut and N Kinomura J. Solid. State Chem. 57 267 (1985)
- [18]
Y Kong, J Xu, X Chen, C Zhang, W Zhang and G Zhang J. Appl. Phys. 87 4410 (2000)
- [19]
H Donnerberg J. Solid State Chem. 123 208 (1996)
- [20]
F A Krôger and H J Vink Point Defects in LiNbO3 (New York: Academic Press) (1986)
- [21]
D M Smyth Proceedings of the sixth international symposium on application of ferroelectrics. p 115 (1986)
- [22]
F Bennani, E Husson J. Eur. Ceram. Soc. 21 847 (2001)
- [23]
X Zhang and F Xue J. Phys. Chem. B 111 2587 (2007)
Acknowledgements
We gratefully acknowledge financial support from the Ministry of Higher Education and the National Center for Scientific Research and Technology.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maaider, K., Masaif, N. & Khalil, A. Stoichiometry-related defect structure in lithium niobate and lithium tantalate. Indian J Phys 95, 275–280 (2021). https://doi.org/10.1007/s12648-020-01696-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Ferroelectrics
- Lithium niobate
- Lithium tantalate
- Defect structure
- Vacancy models
- Curie temperature
PACS Nos.
- 61.72.-y
- 61.72.jd
- 74.62.Dh
- 77.80.B