A facile microwave-assisted synthesis of novel ZnMn2O4 nanoparticles and their structural, morphological, optical, surface area, and dielectric studies

Abstract

Spinel ZnMn2O4 nanoparticles (ZMONPs) were successfully synthesized using a microwave-assisted chemical route. X-ray diffraction (XRD) revealed the growth of ZMONPs along the (211) plane with a tetragonal structure. The crystallite size was ~ 14 nm, estimated using the XRD data. Vibrational analysis confirmed the tetragonal structure of ZMONPs. Scanning electron microscopy images showed nanometer-sized particles, which was in agreement with the XRD results. EDX investigation of the samples demonstrated the good stoichiometric ratio of Zn, Mn, and O (1:2:4). The surface area and pore radius were also investigated in detail through Brunauer–Emmett–Teller analysis and were found to be 10.385 m2/g and 16.24 Å, respectively. The direct band gap for the ZMONPs was estimated using Tauc’s relation and was found to be 2.07 eV, which is larger than that of bulk ZMO (1.91 eV). Dielectric constant and loss values decreased with increasing frequency, while conductivity increased with increasing frequency. The dielectric constant was found to be in the range of 17–25 considering the entire testing range. The dielectric constant value was larger than expected, which could be the result of quantum confinement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [1]

    N Guo, X Wei, X Deng and X Xu Appl. Surf. Sci. 356 1127 (2015).

    ADS  Google Scholar 

  2. [2]

    Z Zheng, Y Cheng, X Yan, R Wang and P Zhang J. Mater. Chem. A, 2 149 (2014).

    Google Scholar 

  3. [3]

    Y Zhang, W Zeng and Y Li J Alloys and Comp. 749 355 (2018).

    Google Scholar 

  4. [4]

    H Long, W Zeng, H Wang, M Qian, Y Liang and Z Wang Adv. Sci. 5 1700634 (2018).

    Google Scholar 

  5. [5]

    R Gherbi, Y Bessekhouad and M Trari J. Alloys and Comp. 655 188 (2016).

    Google Scholar 

  6. [6]

    S Guillemet-Fritsch, C Chanel, J Sarrias, S Bayonne, A Rousset, X Alcobe and M M Sarriòn Sol. State Ion. 128 233 (2000).

    Google Scholar 

  7. [7]

    G Fierro, M Lo Jacono, M Inversi, R Dragone and G Ferraris Appl. Cataly. B, Environm. 30 173 (2001).

    Google Scholar 

  8. [8]

    E S Toberer and R Seshadri Adv. Mater. 17 2244 (2005).

    Google Scholar 

  9. [9]

    L Zhao, X Li and J Zhao Appl. Surf. Sci. 268 274 (2013).

    ADS  Google Scholar 

  10. [10]

    B Elissalde and J Ravez J. Mater. Chem. 11 1957 (2001).

    Google Scholar 

  11. [11]

    I Troyanchuk, A Akimov, N Kasper and V Mihajlov Fizika Tverd. Tela, 36 3263 (1994).

    Google Scholar 

  12. [12]

    J Dubrawski React. Sol. 2 315 (1987).

    Google Scholar 

  13. [13]

    P Zhang, X Li, Q Zhao and S Liu Nan. Res. Lett. 6 323 (2011).

    Google Scholar 

  14. [14]

    S V Lakshmi and S Pauline Int. J. Sci. Res, 3 8 (2014).

    Google Scholar 

  15. [15]

    J Xu, Z Yang, Y Zhang, X Zhang and H Wang Bull. Mater. Sci. 37 1657 (2014).

    Google Scholar 

  16. [16]

    M Peiteado, A Caballero and D Makovec J. Sol. State Chem. 180 2459 (2007).

    ADS  Google Scholar 

  17. [17]

    N S Kumar, R P Suvarna and K C B Naidu Mater. Sci. Eng. B, 242 23 (2019).

    Google Scholar 

  18. [18]

    D Kothandan, R J Kumar, M. Prakash and K C B Naidu Mater. Chem. Phys. 215 310 (2018).

    Google Scholar 

  19. [19]

    W H Sutton, Amer. Ceram. Soc. Bull. 68 376 (1989).

    Google Scholar 

  20. [20]

    M Shkir and S AlFaify, Sci. Rep. 7 16091 (2017).

    ADS  Google Scholar 

  21. [21]

    L S Lobo and A R Kumar J. Mater. Sci.: Mater. Electr. 27 7398 (2016).

    Google Scholar 

  22. [22]

    M Shkir, M Anis, S S Shaikh and S AlFaify, Superlatt. Microstruc. 133 106202 (2019).

    Google Scholar 

  23. [23]

    H Yin, Y Wada, T Kitamura, S Kambe, S Murasawa, H Mori, T Sakata and S Yanagida J. Mater. Chem. 11 1694 (2001).

    Google Scholar 

  24. [24]

    S Mohd, Z R Khan, M S Hamdy, H Algarni and S AlFaify Mater. Res. Exp. 5 095032 (2018).

    Google Scholar 

  25. [25]

    M Shkir, M T Khan, A Khan, A M El-Toni, A Aldalbahi and S AlFaify Mater. Sci. Semic. Proc. 96 16 (2019).

    Google Scholar 

  26. [26]

    T Zhang, H Yue, H Qiu, K Zhu, L Zhang, Y Wei, F Du, G Chen and D Zhang RSC Adv. 5 99107 (2015).

    Google Scholar 

  27. [27]

    H Li, B Song, W Wang and X Chen Mater. Chem. Phys. 130 39 (2011).

    Google Scholar 

  28. [28]

    J Bhagwan, N Kumar, K Yadav and Y Sharma Sol. State Ion. 321 75 (2018).

    Google Scholar 

  29. [29]

    S Mohd, I M Ashraf and S AlFaify, Phys. Script. 94 025801 (2019).

    ADS  Google Scholar 

  30. [30]

    I A Wani, A Ganguly, J Ahmed and T Ahmad, Mater. Lett. 65 520 (2011).

    Google Scholar 

  31. [31]

    N Senthilkumar, V Venkatachalam, M Kandiban, P Vigneshwaran, R Jayavel and IV Potheher Phys. E. 106 121 (2019).

    Google Scholar 

  32. [32]

    J Tauc, R Grigorovici and A Vancu, Phys. Status Sol. (B) 15 627 (1966).

    ADS  Google Scholar 

  33. [33]

    M Shakir, S Kushwaha, K Maurya, G Bhagavannarayana and M Wahab Sol. State Comm. 149 2047 (2009).

    ADS  Google Scholar 

  34. [34]

    S AlFaify and M Shkir Opt. Mater. 88 417 (2019).

    ADS  Google Scholar 

  35. [35]

    S Yan, Y Yu and Y Cao Appl. Surf. Sci. 465 383 (2019).

    ADS  Google Scholar 

  36. [36]

    R C Sripriya, A Ezhil, J Madhavan and A R Victor Mech., Mater. Sci. Eng. J. 9 2412–5954 (2017).

  37. [37]

    M Y Nassar, E A El-Moety and M El-Shahat RSC Adv. 7 43798 (2017).

    Google Scholar 

  38. [38]

    O Kaygili, S V Dorozhkin, T Ates, A A Al-Ghamdi and F Yakuphanoglu, Ceram. Intern. 40 9395 (2014).

    Google Scholar 

  39. [39]

    R Zhang, J F Li and D Viehland J. Amer. Ceram. Soc. 87 864 (2004).

    Google Scholar 

  40. [40]

    N Kumari, V Kumar and S Singh RSC Adv. 5 37925 (2015).

    Google Scholar 

  41. [41]

    Z R Khan, M Zulfequar and M S Khan J. Mater. Sci. 46 5412 (2011).

    ADS  Google Scholar 

  42. [42]

    M Shakir, S Kushawaha, K Maurya, S Kumar, M Wahab and G Bhagavannarayana J. Appl. Crystallog. 43 491 (2010).

    Google Scholar 

  43. [43]

    N Chakrabarty, A Mukherjee, S Sinha, S Basu and A Meikap Phys. E: 64 134 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, for funding this work through Research Groups Program under Grant No. R.G.P. 2/30/40. Author Z. R. Khan would like to thank to Deanship of Scientific Research, University of Hail, for support of this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ziaul Raza Khan or Mohd. Shkir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.R., Shkir, M., Ganesh, V. et al. A facile microwave-assisted synthesis of novel ZnMn2O4 nanoparticles and their structural, morphological, optical, surface area, and dielectric studies. Indian J Phys 95, 43–49 (2021). https://doi.org/10.1007/s12648-020-01695-6

Download citation

Keywords

  • ZnMn2O4 nanoparticle
  • Structural properties
  • Vibrational mode
  • Band gap
  • Dielectric properties

PACS Nos.

  • 61.46.+w
  • 03.75.Hh
  • 78.67.−n
  • 51.70.+f
  • 51.50.+v