Modal propagation characteristics of mono-mode polarization maintaining optical fiber with off centered core

Abstract

In this article, we present modal characteristics of single-mode polarization maintaining off centered circular core fiber in the mid infrared region. We investigate the properties such as modal birefringence, effective index and bending loss for this class of optical fiber by using FEM, a numerically efficient technique at a wavelength of 1.55 µm. The computed value of modal birefringence suggests that the two modes are widely separated to maintain the polarization state. The computed value of effective index explains that the mode remains tightly bound to the core at \( e\, = 20 \) µm, and bending loss is found to be very small for a fiber having bending radius lying in microbending region at different eccentricity. This class of fiber is cheap, practical and promising as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. [1]

    A Alphones and G Sanyal J. Lightwave Technol. 5 598 (1987)

    ADS  Article  Google Scholar 

  2. [2]

    A Alphones Opt. Commun. 60 197 (1986)

  3. [3]

    N Massa Fundamentals of Photonics (Module 1.8) (Spie Press Book) (2008)

  4. [4]

    S Hota Phys.org 1 (2018)

  5. [5]

    G Keiser Optical Fiber Communication (McGraw-Hill) (1983)

  6. [6]

    N Singh, D Varshney, A Kapoor and S K Dey Opt.-Int. J. Light Electron Opt. 124 6967 (2013)

  7. [7]

    V I Krivenkov Dokl. Phys. 47 9 (2002)

  8. [8]

    R B Dyott Elliptical Fiber Waveguides (Artech House) (1995)

  9. [9]

    R B Dyott, J R Cozens and D G Morris Electron. Lett. 15 380 (1979)

    Google Scholar 

  10. [10]

    A Méndez and T F Morse Specialty Optical Fibers Handbook (Academic Press) (2011)

  11. [11]

    V Ramaswamy, R H Stolen, M D Divino and W Pleibel Appl. Opt. 18 4080 (1979)

    ADS  Google Scholar 

  12. [12]

    W Eickhoff Opt. Lett. 7 629 (1982)

  13. [13]

    T Hosaka et al Electron. Lett. 17 530 (1981)

  14. [14]

    N Shibata, C Tanaka, Y Ishida and Y Negishi J. Lightwave Technol. 1 541 (1983)

    ADS  Article  Google Scholar 

  15. [15]

    R Ulrich, S C Rashleigh and W Eickhoff Opt. Lett. 5 273 (1980)

    Google Scholar 

  16. [16]

    N Imoto, A Kawana, S Machida and H Tsuchiya IEEE J. Quantum Electron. 16 1052 (1980)

    ADS  Article  Google Scholar 

  17. [17]

    T R Woliński Acta Phys. Pol. A 9 749 (1999)

  18. [18]

    J Liu and L Yuan JOSA A 31 475 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    J Liu, H Deng and L Yuan Advanced Sensor Systems and Applications V Int. Soc. Opt. Photonics 8561 85611R (2012)

    Google Scholar 

  20. [20]

    H A Muse East Eur. J. Adv. Technol. 2 4 (2015)

  21. [21]

    Y F Chau, C Y Liu and H H Yeh Prog. Electromagn. Res. B 22 39 (2010)

    Article  Google Scholar 

  22. [22]

    S B Libori et al Proc. Opt. Fiber Commun. Exibit TuM2-1 (2001)

  23. [23]

    S K Biswas et al Photonics 5 1 (2018)

  24. [24]

    M R Hasan, M S Anwer and M I Hasan Opt. Eng. 55 056107–1 (2016)

    Google Scholar 

  25. [25]

    A K Mishra, M Kumar, D Kumar and O N Singh J. Mod. Opt. 60 2666 (2013)

    Article  Google Scholar 

  26. [26]

    J A Roumetiotis, A B M Siddique Hossain, J G Fikioris Radio Sci. 15 923 (1980)

    ADS  Article  Google Scholar 

  27. [27]

    G N Watson A Treatise on Theory of Bessel Functions (London: Cambridge University) (1958)

    Google Scholar 

  28. [28]

    M A Abdelrahman and O Moaaz Indian J. Phys. 5 1 (2019)

  29. [29]

    G Canat, R Spittel, S Jetschke, L Lombard and P Bourdon Opt. Express 18 4644 (2010)

  30. [30]

    R T Schermer and J H Cole IEEE J. Quantum Electron. 43 899 (2007)

    ADS  Article  Google Scholar 

  31. [31]

    L Faustini and G Martini J. Lightwave Technol. 15 671 (1997)

    ADS  Article  Google Scholar 

  32. [32]

    C Guan, F Tian, Q Dai, and L Yuan Opt. Express 19 20069 (2011)

  33. [33]

    J Dacles-Mariani and G Rodrigue J. Opt. Soc. Am. B 23 1743 (2006).

    ADS  Article  Google Scholar 

  34. [34]

    A A Amanu Adv. Appl. Sci. 1 (2016)

  35. [35]

    A Zendehnam, M Mirzaei, A Farashiani and L H Farahani Pramana-J. Phys. 74 591 (2010)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Kapoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, G.P., Sil, N., Dey, S.K. et al. Modal propagation characteristics of mono-mode polarization maintaining optical fiber with off centered core. Indian J Phys 95, 133–139 (2021). https://doi.org/10.1007/s12648-020-01682-x

Download citation

Keywords

  • Optical fiber
  • Polarization
  • Birefringence
  • Bend radius
  • Effective index

PACS Nos.

  • 42.81.− i
  • 42.81.Gs
  • 42.25.Lc