Modelling of high-efficiency substrate CIGS solar cells with ultra-thin absorber layer


Solar cells based on Cu(In,Ga)Se2 (CIGS) are very promising thin-film solar cells due to their high absorption coefficient and appropriate optical band gap. In this work, a model of substrate thin-film solar cell of structure ZnO:Al/CdS/CIGS/Mo/glass has been established to estimate the cell parameter of ultra-thin absorber layer. The quantitative assessment of the optical losses due to reflection at interfaces and absorption in window layer (ZnO:Al) and buffer layer (CdS) as well as the recombination losses at front and rear surface of CIGS layer has been studied. The optical losses are carried out based on the optical constants of the used materials, and the recombination losses are carried out in terms of the parameters of the absorber layer. The effect of antireflection coating and reflectivity from metal electrode on the short-circuit current density and hence on the cell efficiency has been studied. It has been shown that the optical losses can prevent 30% of the incident photons from reaching the absorber layer at 150 nm thickness for each of the ZnO:Al and CdS layers. The antireflection coating of 100 nm thickness is capable of increasing JSC by 8%. High efficiency of 19.56% has been obtained at 1 µm thickness of CIGS layer under certain parameters of the used materials, and this efficiency can reach 20.22% at 100% reflectivity from the back contact.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    H Movla Optik 124 5871 (2013)

    ADS  Article  Google Scholar 

  2. [2]

    T Wada, Y Hashimoto, S Nishiwaki, T. Satoh, S Hayashi, T Negami and H. Miyake Sol. Energy Mater. Sol. Cells 67 305(2001)

    Article  Google Scholar 

  3. [3]

    H Heriche, Z Rouabah and N Bouarissa Int. J. Hydrogen Energ. 42 9524 (2017)

    Article  Google Scholar 

  4. [4]

    T Nakada, Y Hirabayashi, T Tokado, D Ohmori and T Mise Sol. Energy 77 739 (2004)

    ADS  Article  Google Scholar 

  5. [5]

    T Nakada Thin Solid Films 480481 419 (2005)

    ADS  Article  Google Scholar 

  6. [6]

    6.M D Heinemann, V Efimova, R Klenk, B Hoepfner, M Wollgarten, T Unold, H-W Schock and C A Kaufmann Prog. Photovolt. Res. Appl. 23 1228 (2015)

    Article  Google Scholar 

  7. [7]

  8. [8]

    B Vermang, JT Wätjen, V Fjällström, F Rostvall, M Edoff, R Kotipalli, F Henry and D Flandre Prog. Photovolt Res. Appl. 22 1023 (2014)

    Article  Google Scholar 

  9. [9]

    N Amin, P Chelvanathan, H M Istiaque and K Sopian Energy Procedia 15 291 (2012)

    Article  Google Scholar 

  10. [10]

    H A Mohamed J. Appl. Phys. 113 093105 (2013)

    ADS  Article  Google Scholar 

  11. [11]

    H A Mohamed, Thin Solid Films 589 72 (2015)

    ADS  Article  Google Scholar 

  12. [12]

    H A Mohamed, A S Mohamed and H M Ali Mater. Res. Express 5 056411 (2018)

    Article  Google Scholar 

  13. [13]

    H A Mohamed Can. J. Phys. 92 1350 (2014)

    ADS  Article  Google Scholar 

  14. [14]

    H A Mohamed Philos. Maga. 94 3467 (2014)

    ADS  Article  Google Scholar 

  15. [15]

    H A Mohamed Solar Energy 108 360 (2014)

    ADS  Article  Google Scholar 

  16. [16]

    S Lee and K Price J Park Thin Solid Films 619 208 (2016)

    ADS  Article  Google Scholar 

  17. [17]

    O A Dobrozhan, P S Danylchenko, A I Novgorodtsev and A S Opanasyuk J. Nanoelectron. Optoe. 12 1 (2017)

    Article  Google Scholar 

  18. [18]

    L A Kosyachenko, X Mathew, P D. Paulson, V Ya Lytvynenko and O L Maslyanchuk Sol. Energy Mater. Sol. Cells 130 291 (2014)

    Article  Google Scholar 

  19. [19]

    J Liu, M Zhang and X Feng Optik 172 1172 (2018)

    ADS  Article  Google Scholar 

  20. [20]

    Q Xu, R D Hong, H L Huang, Z F Zhang, M K Zhang, X P Chen and Z Y Wu Opt. Laser Technol. 45 513 (2013)

    ADS  Article  Google Scholar 

  21. [21]

    S Ninomiya and S Adachi J. Appl. Phys. 78 1183 (1995)

    ADS  Article  Google Scholar 

  22. [22]

    M Born and E Wolf Principles of Optics, 7th ed. (Cambridge: Cambridge University Press) p 65 (1999)

    Google Scholar 

  23. [23]

    L Kosyachenko and T Toyama Sol. Energy Mater. Sol. Cells 120 512(2014)

    Article  Google Scholar 

  24. [24]

    L A Kosyachenko Semiconductors 40 710 (2006)

    ADS  Article  Google Scholar 

  25. [25]

    S M Sze and K K Ng Physics of Semiconductor Devices (New Jersey: Wiley-Interscience) p 723 (2006)

    Google Scholar 

  26. [26]

    L A Kosyachenko, E V Grushko and T I Mykytyuk Semiconductors 46 466 (2012)

    ADS  Article  Google Scholar 

  27. [27]

    W Wang, M T Winkler, O Gunawan, T Gokmen, T K Todorov, Y Zhu and D B Mitzi Adv. Energy Mater. 4 1301465 (2014)

    Article  Google Scholar 

  28. [28]

    L A Kosyachenko, EV. Grushko and VV Motushchuk Sol. Energy Mater. Sol. Cells 90 2201 (2006)

    Article  Google Scholar 

  29. [29]

    P Xiao, Z Ming, Z Daming, S Rujun, Z Leng, W Yaowei, L Xunyan, W Yixuan and R Guoan Appl. Surf. Sci. 442 308 (2018)

    Article  Google Scholar 

  30. [30]

    H Li, F Qu, H Luo, X Niu, J Chen, Y Zhang, H Yao, X Jia, H Gu and W Wang Results Phys. 12 704 (2019)

    ADS  Article  Google Scholar 

  31. [31]

    S T Kim, K Kim, J H Yun and B T Ahn Curr. Appl. Phys. 18 912(2018)

    ADS  Article  Google Scholar 

Download references


This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.

Author information



Corresponding author

Correspondence to H. A. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.S., Mohamed, H.A. Modelling of high-efficiency substrate CIGS solar cells with ultra-thin absorber layer. Indian J Phys 94, 1725–1732 (2020).

Download citation


  • CIGS solar cell
  • Optical loss
  • Recombination loss
  • Efficiency


  • 72.40.+w
  • 78.20.−e
  • 78.20.Bh
  • 78.20.Ci
  • 84.60.Jt