Investigation on electrical, magnetic and magneto-dielectric properties of yttrium and cobalt co-doped bismuth ferrite nanoparticles

Abstract

Yttrium and cobalt co-doped multiferroic bismuth ferrite (BFO) nanopowder (Bi1−xYxFe1−yCoyO3 with x = 0.00, y = 0.0, 0.05 and x = 0.05, y = 0.05, 0.1, 0.15) was synthesized by using sol–gel method. The as-grown powder was found to be amorphous that crystallizes to the desired phase after annealing at 600 °C for 2 h in the air. X-ray diffraction pattern confirms the formation of the pure-phase BFO, and with increasing the content of yttrium and cobalt, the two dominant split peaks merge. But for x = 0.05, y = 0.15 sample, the splitting again appears. The chemical bonding between Fe–O and Bi–O was identified by the FTIR analysis. The samples show the high-frequency dispersion of dielectric constant and loss tangent at low frequency. The improved AC conductivity was observed for the doped samples. The electrical polarization was enhanced with increasing content of yttrium and cobalt in the sample. The magnetic properties of the doped samples were also found to be enhanced. The retentivity of the samples increased from 0.15 emu/g (x = 0.0, y = 0.0) to 0.63 emu/g (x = 0.05, y = 0.1) with increasing the content of yttrium and cobalt. The effect of the magnetic field on the dielectric constant was analyzed by considering the magneto-dielectric coefficient. The results were analyzed in light of the reported results in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    M Fiebig J. Phys. D Appl. Phys. 38 R123 (2005)

    Article  ADS  Google Scholar 

  2. [2]

    W Eerenstein, N D Mathur and J F Scott Nature 442 759 (2006)

    Google Scholar 

  3. [3]

    S W Cheong and M Mostovoy Nat. Mater. 6 13 (2007)

    Article  ADS  Google Scholar 

  4. [4]

    R Ramesh and N A Spaldin Nat. Mater. 6 21 (2007)

    Article  ADS  Google Scholar 

  5. [5]

    A Singh, V Pandey, R K Kotnala and D Pandey Phys. Rev. Lett. 101 247602 (2008)

    Article  ADS  Google Scholar 

  6. [6]

    G Catalan and J F Scott Adv. Mater. 21 2463 (2009)

    Article  Google Scholar 

  7. [7]

    I Coondoo, N Panwar, I Bdikin, V S Puli, R S Katiyar and A L Kholkin J. Phys. D Appl. Phys. 45 055302 (2012)

    Article  ADS  Google Scholar 

  8. [8]

    Y Wang, L Zhou, M Zhang, X Chen, J Liu and Z Liu Appl. Phys. Lett. 84(10) 1731 (2004)

    Article  ADS  Google Scholar 

  9. [9]

    T J Park, G C Papaefthymiou, A J Viescas, A R Moodenbaugh and S S Wong Nano Lett. 7 766 (2007)

    Google Scholar 

  10. [10]

    Sk M Hossain, A Mukherjee, S Chakraborty, S M Yusuf, S Basu, and M Pal Mater. Focus 2(2) 92 (2013)

  11. [11]

    F Z Huang, X M Lu, W W Lin, X M Wu, Y Kan and J S Zhu Appl. Phys. Lett. 89 242914 (2006)

    Google Scholar 

  12. [12]

    V A Khomchenko, D A Kiselev, I K Bdikin, V V Shvartsman, P Borisov, W Kleemann, J M Vieira and A L Kholkin Appl. Phys. Lett. 93 262905 (2008)

    Google Scholar 

  13. [13]

    A Mukherjee, Sk M Hossain, S Basu and M Pal Appl. Nanosci. 2 305 (2012)

    Article  Google Scholar 

  14. [14]

    A Mukherjee, S Basu, G Chakraborty and M Pal J. Appl. Phys. 112 014321 (2012)

    Article  ADS  Google Scholar 

  15. [15]

    G L Yuan and S W Or J. Appl. Phys. 100 024109 (2006)

    Article  ADS  Google Scholar 

  16. [16]

    S K Singh and H Ishiwara Jpn. J. Appl. Phys. 45 3194 (2006)

    Article  ADS  Google Scholar 

  17. [17]

    W Eerenstein, F D Morrison, J Dho, M G Blamire, J F Scott and N D Mathur Science 307 1203 (2005)

    Google Scholar 

  18. [18]

    J Silva, A Rayes, R Castaneda, H Esparza, H.Camacho, J Matutes and L Fuentes Ferroelectrics 426 103 (2012)

  19. [19]

    N Adhlakha, K L Yadav, R Singh, N Adhlakha and R Singh Sci. Adv. Mater. 5 947 (2013)

    Article  Google Scholar 

  20. [20]

    X Zheng, Q Xu, Z Wen, X Lang, D Wu, T Qiu and M X Xu J. Alloys Compd. 499 108 (2010)

    Article  Google Scholar 

  21. [21]

    A Mukherjee, M Banerjee, S Basu, Nguyen Thi Kim Thanh, L A W Green and M Pal Physica B. 448 199 (2014)

    Article  ADS  Google Scholar 

  22. [22]

    A Kumar and K L Yadav Physica B. 405 2362(2010)

    Article  ADS  Google Scholar 

  23. [23]

    M Gowrishankar, D Rajan Babu and S Madeswaran J. Magn. Magn. Matter. 418 54 (2016)

    Article  ADS  Google Scholar 

  24. [24]

    D Varshney, A Kumar and K Verma J. Alloys Compd. 509 8421 (2011)

    Article  Google Scholar 

  25. [25]

    Z Chen, J Hu, Z Lu and X He Ceram. Int. 37 2359 (2011)

    Google Scholar 

  26. [26]

    C G Koops Phys. Rev. 83 121 (1951)

  27. [27]

    J C Maxwell Electricity and Magnetism (London: Oxford Univ. Press) (1933)

    Google Scholar 

  28. [28]

    K W Wagner Ann. Phys. 40 818 (1993)

    Google Scholar 

  29. [29]

    K Amarendra Singh, T C Goel, R G Mendiratta, O P Thakur, J Chandra Prakash Appl. Phys. 91 6626 (2002)

    Article  ADS  Google Scholar 

  30. [30]

    A R Long Adv. Phys. 31 553 (1982)

    Article  ADS  Google Scholar 

  31. [31]

    X D Qi, J Dho, R Tomov, M G Blamire, J L MacManus-Driscoll Appl. Phys. Lett. 86 062903 (2006)

    Article  ADS  Google Scholar 

  32. [32]

    H Uchida, I Okada, H Matsuda, T Iijima, T Watanabe, H Funakubo Jpn. J. Appl. Phys. 43 2636 (2005)

    Article  ADS  Google Scholar 

  33. [33]

    J K Kim, S S Kim, W J Kim Mater. Lett. 59 4006 (2005)

    Article  Google Scholar 

  34. [34]

    A K Jonscher The universal dielectric response. Nature 267 673 (1977)

    Article  ADS  Google Scholar 

  35. [35]

    O Prakash, K D Mandal and C C Chistopher (Electronic Process in Ionic Crystals) (London: Oxford Univ. Press) (1997)

    Google Scholar 

  36. [36]

    B Kundys, A Maignan, C Martin, N Nguyen and C Simon Appl. Phys. Lett. 92 112905 (2008)

    Google Scholar 

  37. [37]

    J Li, Y Duan, H He and D Song J. Alloys Compd. 315 259 (2001)

    Article  Google Scholar 

  38. [38]

    Y H Lee, J M Wu and C H Lai Appl. Phys. Lett. 88 042903 (2006)

    Article  ADS  Google Scholar 

  39. [39]

    A Mukherjee, S Basu, P K Manna, S M Yusuf and Mrinal Pal J. Mater.Chem. C. 2 5885 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Huidrom Hemanta Singh, is thankful to CSIR, New Delhi, for providing financial assistance as JRF student (09/476(0079)/2017-EMR-I). The author is thankful to the NIT Manipur for extending the valuable facilities for taking XRD and the Department of Physics, Manipur University for dielectric measurements. He is also thankful to Central Instrumentation Facility (CIF), IIT Guwahati, for VSM measurement and Delhi University for PE loop measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Hemanta Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hemanta Singh, H., Basantakumar Sharma, H. Investigation on electrical, magnetic and magneto-dielectric properties of yttrium and cobalt co-doped bismuth ferrite nanoparticles. Indian J Phys 94, 1561–1572 (2020). https://doi.org/10.1007/s12648-019-01611-7

Download citation

Keywords

  • Multiferroic materials
  • AC conductivity
  • Electric polarization
  • FTIR spectroscopy
  • Magnetization
  • Magneto-dielectric coefficient

PACS Nos.

  • 77.22.-d
  • 77.22.Gm
  • 75.85+t
  • 75.60.-d