Construction of solitary wave solutions of some nonlinear dynamical system arising in nonlinear water wave models

Abstract

The higher order of nonlinear partial differential equations in mathematical physics is studied. We used the analytical mathematical methods of the nonlinear (3+1)-dimensional extended Zakharov–Kuznetsov dynamical, modified KdV–Zakharov–Kuznetsov and generalized shallow water wave equations to demonstrate the efficiency and validity of the proposed powerful technique. The shallow water wave models have been applied in tidal waves and weather simulation. Exact wave solutions of these models in various forms such as Kink and anti-Kink solitons, bright–dark soliton, solitary wave and periodic solutions are constructed that have plenty of applications in diverse areas of physics. Graphically, we presented the movement of some obtained solitary wave solutions that aids in understanding the physical phenomena of these models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. [1]

    M J Ablowitz and P A Clarkson Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) (1991)

    Google Scholar 

  2. [2]

    P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Bristol, UK: Institute of Physics Publishing) (2002)

    Google Scholar 

  3. [3]

    S A El-Tantawy and W M Moslem Phys Plasmas 21 052112 (2014)

    ADS  Google Scholar 

  4. [4]

    M B Kochanov, N A Kudryashov and D I Sinel’shchikov J Appl Math Mech 77 25 (2013)

    MathSciNet  Google Scholar 

  5. [5]

    N Nasreen, D Lu and M Arshad Optik 161 221 (2018)

    ADS  Google Scholar 

  6. [6]

    D Lu, A R Seadawy, M Arshad and J Wang Results in Physics 7 899 (2017)

    ADS  Google Scholar 

  7. [7]

    A R Seadawy, M Arshad and D Lu Eur. Phys. J. Plus 132 162 (2017)

    Google Scholar 

  8. [8]

    Z M Liu, W S Duan and G J He Phys Plasmas 15 083702 (2008)

    ADS  Google Scholar 

  9. [9]

    A R Seadawy Phys Plasmas 21 052107 (2014)

    ADS  Google Scholar 

  10. [10]

    H Sarfraz and U Saleem Modern Physics Letters A 32 1750196 (2017)

    ADS  MathSciNet  Google Scholar 

  11. [11]

    A R Seadawy and D Lu Result Phys 6 560 (2016)

    ADS  Google Scholar 

  12. [12]

    F Demontis Theoret Math Phys 168 886 (2011)

    MathSciNet  Google Scholar 

  13. [13]

    M Eslami Nonlinear Dynamics 85 813 (2016)

    MathSciNet  Google Scholar 

  14. [14]

    M Eslami and M Mirzazadeh Ocean Engineering 83 133 (2014)

    Google Scholar 

  15. [15]

    M Eslami, A Neyrame and M Ebrahimi Journal of King Saud University - Science 24 69 (2012)

    Google Scholar 

  16. [16]

    M Mirzazadeh, M Eslami and A H Arnous European Physical Journal Plus 130 4 (2015)

    ADS  Google Scholar 

  17. [17]

    F S Khodadad, F Nazari, M Eslami and H Rezazadeh Optical and Quantum Electronics 49 384 (2017)

    Google Scholar 

  18. [18]

    M Mirzazadeh, M Eslami and A Biswas Computational and Applied Mathematics 33 831 (2014)

    MathSciNet  Google Scholar 

  19. [19]

    J G Liu, M Eslami, H Rezazadeh and M Mirzazadeh Nonlinear Dynamics 95 1027 (2019)

    Google Scholar 

  20. [20]

    Aly seadawy and Nadia Cheemaa Indian Journal of Physics (2019) https://doi.org/10.1007/s12648-019-01442-6

  21. [21]

    Rabab Shahein and Aly seadawy Indian Journal of Physics 93 (2019) 941–949

    ADS  Google Scholar 

  22. [22]

    Aly seadawy, Dianchen Lu and Muhammad Arshad Indian Journal of Physics 93 (2019) 1041–1049

    ADS  Google Scholar 

  23. [23]

    Aly R. Seadawy, Mujahid Iqbal and Dianchen Lu Indian Journal of Physics (2019). https://doi.org/10.1007/s12648-019-01500-z

    Article  Google Scholar 

  24. [24]

    Aly R. Seadawy, Mujahid Iqbal and Dianchen Lu Indian Journal of Physics (2019). https://doi.org/10.1007/s12648-019-01532-5

    Article  Google Scholar 

  25. [25]

    M N Ali, A R Seadawy and S M Husnine Modern Physics Letters A 34 1950027 (2019)

    ADS  MathSciNet  Google Scholar 

  26. [26]

    M A Helal and A R Seadawy Computers and Mathematics with Applications 64 3557 (2012)

    MathSciNet  Google Scholar 

  27. [27]

    M H Islam, K Khan, M A Akbar and M A Salam SpringerPlus 3 105 (2014)

    Google Scholar 

  28. [28]

    F Mahmud, M Samsuzzoha and M A Akbar Results in Physics 7 4296 (2017)

    ADS  Google Scholar 

  29. [29]

    K Khan and M A Akbar Mathematical Methods in Applied Sciences 39 2752 (2016)

    ADS  MathSciNet  Google Scholar 

  30. [30]

    M G Hafez, M N Alam and M A Akbar Results Phys 4 177 (2014)

    ADS  Google Scholar 

  31. [31]

    M M Miah, H M S Ali, M A Akbar and A M Wazwaz The European Physical Journal Plus 132 252 (2017)

    ADS  Google Scholar 

  32. [32]

    M A Akbar, N H M Ali and R Roy Results in Physics 9 1031 (2018)

    ADS  Google Scholar 

  33. [33]

    M A Huda, M A Akbar and S S Shanta Journal of Ocean engineering and Science 3 1 (2018)

    Google Scholar 

  34. [34]

    V I Petviashvili and O V Pokhotelov Solitary Waves in Plasmas and in the Atmosphere (Moscow: Energoatomizdat) (1989)

    Google Scholar 

  35. [35]

    D E Pelinovsky, Y A Stepanyants and Y S Kivshar Phys. Rev. E 51 5016 (1995)

    ADS  MathSciNet  Google Scholar 

  36. [36]

    E Falcon, C Laroche and S Fauve Phys. Rev. Lett. 89 204501 (2002)

    ADS  Google Scholar 

  37. [37]

    B G Zhang, Z R Liu and Q Xiao Appl Math Comput 217 392 (2010)

    MathSciNet  Google Scholar 

  38. [38]

    G W Wang, T Z Xu, S Johnson and A Biswas Asterophys Space Sci 349 317 (2014)

    ADS  Google Scholar 

  39. [39]

    M Iqbal, A R Seadawy and D Lu Modern Physics Letters A 33 1850217 (2018)

    ADS  MathSciNet  Google Scholar 

  40. [40]

    M Arshad, A R Seadawy, D Lu and J Wang Chinese J. phys. 55 780 (2017)

    ADS  Google Scholar 

  41. [41]

    X Y Wen Appl Math Comput 217 1367 (2010)

    MathSciNet  Google Scholar 

  42. [42]

    G Xu and L Zhibin Chaos Solitons Fractals 24 549 (2005)

    ADS  MathSciNet  Google Scholar 

  43. [43]

    J G Liu and Y He Nonlinear Dynam. 90 363 (2017)

    MathSciNet  Google Scholar 

  44. [44]

    X Yu, Y T Gao, Y Z Sun and Y Liu Phys Scr 81 045402 (2010)

    ADS  Google Scholar 

  45. [45]

    R Hirota Phys Rev Lett 27 1192 (1971)

    ADS  Google Scholar 

  46. [46]

    M A Abdou Appl Math Comput 190 988 (2007)

    MathSciNet  Google Scholar 

  47. [47]

    Y Yuqin Chaos Solitons Fractals 24 301 (2005)

    ADS  Google Scholar 

  48. [48]

    Z Xin and W D Shan Appl Math Comput 212 296 (2009)

    MathSciNet  Google Scholar 

  49. [49]

    B Tian and Y T Gao Comput. Phys. Comm. 95 139 (1996)

    ADS  Google Scholar 

  50. [50]

    D Lu, A R Seadawy, M. Arshad and Jun Wang Results in Physics 7 899 (2017)

    ADS  Google Scholar 

  51. [51]

    K Tariq and A R Seadawy Results in Physics 7 1143 (2017)

    ADS  Google Scholar 

  52. [52]

    U Yavuz, K Dogan and E I Ibrahim Comput Math Appl 61 1278 ( 2011)

    MathSciNet  Google Scholar 

  53. [53]

    S Dinarvand, S Khosravi, A Doosthoseini and M M Rashidi Adv Theor Appl Mech 1 327 (2008)

    Google Scholar 

  54. [54]

    A H Khater, D K Callebaut, M A Helal and A R Seadawy Physica Scripta 74 384 (2006)

    ADS  MathSciNet  Google Scholar 

  55. [55]

    M Arshad, A R Seadawy and D Lu The European Physical Journal Plus 132 371 (2017)

    ADS  Google Scholar 

  56. [56]

    A R Seadawy European Physical Journal Plus 132 518 (2017)

    ADS  Google Scholar 

  57. [57]

    A R Seadawy International Journal of Computational Methods 15 1850017 (2018)

    MathSciNet  Google Scholar 

  58. [58]

    A R Seadawy and K. El-Rashidy The Pramana - Journal of Physics 87 20 (2016)

    ADS  Google Scholar 

  59. [59]

    A R Seadawy Comput Math Appl 62 (2011)

  60. [60]

    M H Islam, K Khan, M A Akbar and M A Salam Springer Plus 3 105 (2014)

    Google Scholar 

  61. [61]

    Abdullah, A R Seadawy and J Wang Brazilian Journal of Physics 49 67 (2019)

  62. [62]

    J Gu, Y Zhang and H Dong Computer Math. with Applications 76 1408 (2018)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Ethics declarations

Competing interests

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. The authors did not have any competing interests in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seadawy, A.R., Lu, D. & Nasreen, N. Construction of solitary wave solutions of some nonlinear dynamical system arising in nonlinear water wave models. Indian J Phys 94, 1785–1794 (2020). https://doi.org/10.1007/s12648-019-01608-2

Download citation

Keywords

  • Extended Zakharov–Kuznetsov dynamical model
  • Modified KdV–Zakharov–Kuznetsov model
  • Generalized (3+1) shallow water
  • Solitons
  • Solitary wave solutions

PACS Nos.

  • 02.30.Jr
  • 05.45.Yv
  • 47.10.A
  • 47.35.+i
  • 47.35.Fg