Effects of graphene content on resistive switching for Au/poly(methyl methacrylate): reduced graphene oxide/heavily doped p-type Si devices

Abstract

This study determines the effect of incorporating reduced graphene oxide (RGO) nanosheets into poly(methyl methacrylate) (PMMA) on the resistive switching (RS) mechanisms by measuring the current–voltage characteristics for Au/PMMA/heavily doped p-type Si (p+-Si) and Au/PMMA:RGO/p+-Si devices. The effect of RGO content on the RS properties is also determined. The Au/PMMA/p+-Si device exhibits set/reset–free current–voltage characteristics because of the insulating properties of PMMA. However, the Au/PMMA:RGO/p+-Si device exhibits RS behavior. Incorporating RGO into PMMA results in an increase in conductivity, the formation of PMMA–RGO interfaces and a significant increase in the trap density at the PMMA/RGO interfaces, so the RS performance is improved for Au/PMMA:RGO/p+-Si devices. It is shown that the current density for Au/PMMA:RGO/p+-Si devices is limited by the combined effect of ohmic conduction, space-charge-limited current conduction and trap-filled limited current conduction. An excess amount of RGO in PMMA does not result in any memory effect during the forward- and reverse-biased sweeps because there is a significant increase in the conductivity of PMMA:RGO film.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    J Mangalam, S Agarwal, A N Resmi, M Sundararajan and K B Jinesh Org. Electron.29 33 (2016).

    Article  Google Scholar 

  2. [2]

    Y Lin, H Y Xu, Z Q Wang, T Cong, W Z Liu, H L Ma and Y C Liu Appl. Phys. Lett.110 193503 (2017).

    ADS  Article  Google Scholar 

  3. [3]

    S T Han, L Hu, X Wang, Y Zhou, Y J Zeng, S Ruan, C Pan and Z Peng Adv. Sci.2017 1600435 (2017).

    Article  Google Scholar 

  4. [4]

    C C Hung and Y J Lin Chem. Phys. Lett.692 388 (2018).

    ADS  Article  Google Scholar 

  5. [5]

    Y Liu, F Li, Z Chen, T Guo, C Wu and T W Kim Vacuum130 109 (2016).

    ADS  Article  Google Scholar 

  6. [6]

    I J Baek and W J Cho Solid State Electron.140 129 (2018).

    ADS  Article  Google Scholar 

  7. [7]

    Y J Yang, M M Rehman, G U Siddiqui, K H Na and K H Choi Current Applied Physics17 1733 (2017).

    ADS  Article  Google Scholar 

  8. [8]

    M V Jacob, D Taguchi, M Iwamoto, K Bazaka and R S Rawat Carbon112 111 (2017).

    Article  Google Scholar 

  9. [9]

    D I Son, T W Kim, J H Shim, J H Jung, D U Lee, J M Lee, W I Park and W K Choi Nano Lett.10 2441 (2010).

    ADS  Article  Google Scholar 

  10. [10]

    S Dugu, S P Pavunny, T B Limbu, B R Weiner, G Morell and R S Katiyar APL Mater.6 058503 (2018).

    ADS  Article  Google Scholar 

  11. [11]

    J H Lin, J J Zeng, Y C Su and Y J Lin Appl. Phys. Lett.100 153509 (2012).

    ADS  Article  Google Scholar 

  12. [12]

    J J Zeng, C H Ruan, J H Lin and Y J Lin Semicond. Sci. Technol.28 065008 (2013).

    ADS  Article  Google Scholar 

  13. [13]

    Q Yu, J Lian, S Siriponglert, H Li, Y P Chen and S S Pei Appl. Phys. Lett.93 113103 (2008).

    ADS  Article  Google Scholar 

  14. [14]

    S J Chae, F Güneş, K K Kim, E S Kim, G H Han, S M Kim, H J Shin, S M Yoon, J Y Choi, M H Park, C W Yang, D Pribat and Y H Lee Adv. Mater.21 2328 (2009).

    Article  Google Scholar 

  15. [15]

    J Chen, L Xu, J Lin, Y Geng, L Wang and D Ma Appl. Phys. Lett.89 083514 (2006).

    ADS  Article  Google Scholar 

  16. [16]

    T Guo, T Tan and Z Liu J. Mater. Sci.: Mater. Electron.26 6699 (2015).

    Google Scholar 

  17. [17]

    Z Xu, M Gao, L Yu, L Lu, X Xu and Y Jiang ACS Appl. Mater. Interfaces6 17823 (2014).

    Article  Google Scholar 

  18. [18]

    J X Shen, H Q Qian, G F Wang, Y H An, P G Li, Y. Zhang, S L Wang, B Y Chen and W H Tang Appl. Phys. A 111 303 (2013).

    ADS  Article  Google Scholar 

  19. [19]

    R Scheer J. Appl. Phys.105 104505 (2009).

    ADS  Article  Google Scholar 

  20. [20]

    K H Park, J H Jung, F Li, D I Son and T W Kim Appl. Phys. Lett.93 132104 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wu, C., Ke, Z. et al. Effects of graphene content on resistive switching for Au/poly(methyl methacrylate): reduced graphene oxide/heavily doped p-type Si devices. Indian J Phys 94, 1209–1214 (2020). https://doi.org/10.1007/s12648-019-01568-7

Download citation

Keywords

  • Polymer
  • Electrical properties
  • Si
  • Thin films
  • Resistive switching
  • Two-dimensional materials

PACS Nos.

  • 68.55.Ln
  • 72.80.Le
  • 72.80.Tm
  • 73.63.Rt
  • 73.50.−h