Electron emission cross sections for collisions of heavy ions with atomic targets

Abstract

A theoretical study of the double-differential cross sections (DDCS) for ejection of electron from hydrogen atom in ground state by the impact of \(\hbox {C}^{6+}\) ion with energy values 1 and 2.5 MeV/amu is presented. For the final state, we use a continuum distorted wave that contains the product of two Coulomb distortions due to the projectile–electron and target–electron Coulombic interactions for which it is called the two-Coulomb-wave (2CW) model. In this paper, the energy and angular distributions of DDCS for electron emission from atomic hydrogen have been investigated. The ejected electrons are influenced by the combined fields of the target and the projectile ion. Comprehensive comparisons are made between the three-Coulomb-wave model (Jana et al. in Eur Phys J D 66:243, 2012) and the present 2CW model. The emitted electron, the incident projectile ion and the residual ion are considered to be in the same plane. It is found that the two-centre effect has a major influence on the observed forward–backward angular asymmetry in the angular distribution of electron emission spectra. The region of the binary encounter peak is analysed in detail. The present computed results have been compared with the available experimental results as well as other theoretical calculations based on the first Born approximation and the continuum distorted wave eikonal initial state approximation. Moreover, the present computed results are in better agreement with the available experimental data for electron emission cross sections.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. [1]

    N Stolterfoht, R D DuBois and R D Rivarola Electron Emission in Heavy Ion-Atom Collisions (Berlin: Springer) (1997)

    Google Scholar 

  2. [2]

    N Stolterfoht et al Eur. Phys. Lett. 4 899 (1987)

    ADS  Article  Google Scholar 

  3. [3]

    S Suarez, C Garibotti, W Mackbach and G Bernardi Phys. Rev. Lett. 70 418 (1993)

    ADS  Article  Google Scholar 

  4. [4]

    R Moshammer et al Phys. Rev. Lett. 73 3371 (1994)

    ADS  Article  Google Scholar 

  5. [5]

    N Stolterfoht, H Platten, G Schiwietz, D Schneider, L Gulyas, P D Fainstein and A Salin Phys. Rev. A 52 3796 (1995)

    ADS  Article  Google Scholar 

  6. [6]

    L C Tribedi, P Richard, Y D Wang, C D Lin and R C Olson Phys. Rev. Lett. 77 3767 (1996)

    ADS  Article  Google Scholar 

  7. [7]

    L C Tribedi, P Richard, W Dettauen, L Gulyas, M W Gealy and M E Rudd J. Phys. B 31 L369 (1998)

    ADS  Article  Google Scholar 

  8. [8]

    M Brauner, J S Briggs and H Klar J. Phys. B At. Mol. Opt. Phys. 22 2265 (1989)

    ADS  Article  Google Scholar 

  9. [9]

    A Bandyopadhyay, K Roy, P Mandal and N C Sil, J. Phys. B At. Mol. Opt. Phys. 13 4337 (1994)

    ADS  Article  Google Scholar 

  10. [10]

    III G W Kerby, M W Gealy, Y Y Hsu, M E Rudd, D R Schultz and C O Reinhold Phys. Rev. A 51 2256 (1995)

    ADS  Article  Google Scholar 

  11. [11]

    S Jones and D H Madison Phys. Rev. A 55 444 (1997)

    ADS  Article  Google Scholar 

  12. [12]

    K Tokesi and G Hock Nucl. Instrum. Methods Phys. Res. B 154 263 (1999)

    ADS  Article  Google Scholar 

  13. [13]

    J Berakdar, J S Briggs and H Klar Z. Phys. D Atoms Mol. Clust. 24 351 (1992)

    Article  Google Scholar 

  14. [14]

    S Jana, R Samanta and M Purkait Eur. Phys. J. D 66 243 (2012)

    ADS  Article  Google Scholar 

  15. [15]

    A C Laforge, K N Egodapitiya, J S Alexander, A Hasan, M F Ciappina, M A Khakoo and M Schulz Phys. Rev. Lett. 103 053201 (2009)

    ADS  Article  Google Scholar 

  16. [16]

    M McGovern, D Assafrao, J R Mohallem, Colm T Whelan, and H R Walters J. Phys. Rev. A 79 042707 (2009)

    ADS  Article  Google Scholar 

  17. [17]

    M Schulz, A C Laforge, K N Egodapitiya, J S Alexander, A Hasan, M F Ciappia, A C Roy, R Dey, A Samolov and A L Godunov Phys. Rev. A 81 052705 (2010)

    ADS  Article  Google Scholar 

  18. [18]

    H R J Walters and Colm T Whelan Phys. Rev. A 92 062712 (2015)

    ADS  Article  Google Scholar 

  19. [19]

    A Mondal, C Mandal and M Purkait Nucl. Instrum. Methods Phys. Res. B 353 28 (2015)

    ADS  Article  Google Scholar 

  20. [20]

    M Brauner, J S Briggs and H Klar J. Phys. B 22 2265 (1989)

    ADS  Article  Google Scholar 

  21. [21]

    E Ghanbari-Adivi and S Eskandari Chin. Phys. B 24 013401 (2015)

    ADS  Article  Google Scholar 

  22. [22]

    E Ghanbari-Adivi and S Eskandari Chin. Phys. B 24 103403 (2015)

    Article  Google Scholar 

  23. [23]

    D Fregenal, J M Monti, J Fiol, P D Fainstein, R D Rivarola, G Bernardi and S Suarez J. Phys. B At. Mol. Opt. Phys. 47 155204 (2014)

    ADS  Article  Google Scholar 

  24. [24]

    S Biswas, S Kasthurirangal, D Mishra, J M Monti, R D Rivarola, P D Fainstein and L C Tribedi Phys. Rev. A 91 022711 (2015)

    ADS  Article  Google Scholar 

  25. [25]

    A Mondal, C R Mandal and M Purkait Eur. Phys. J. D 70 16 (2016)

    ADS  Article  Google Scholar 

  26. [26]

    N Nordsieck Phys. Rev. 93 785 (1954)

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    R R Lewis J. Phys. 102 537 (1956)

    Google Scholar 

  28. [28]

    R Samanta, S Jana, S Ghosh, C. R. Mandal and M Purkait Indian J. Phys. 86 503 (2012)

    ADS  Article  Google Scholar 

  29. [29]

    S Jana and M Purkait Indian J. Phys. 89 641 (2014)

    ADS  Article  Google Scholar 

  30. [30]

    M Ghosh C R Mandal and S C Mukherjee Phys. Rev. A 35 2815 (1987)

    ADS  Article  Google Scholar 

  31. [31]

    L C Tribedi, P Richard, W Dettauen, L Gulyas, M E Rudd and R Moshammer Phys. Rev. A 63 062723 (2001)

    ADS  Article  Google Scholar 

  32. [32]

    M Gryzinski Phys. Rev. 115 374 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    T F M Bonsen and L Vriens Physica 47 307 (1970)

    ADS  Article  Google Scholar 

  34. [34]

    L C Tribedi, P Richard, W Dettauen, L Gulyas, M W Gealy and M E Rudd J. Phys. B At. Mol. Opt. Phys. 31 L369 (1998)

    ADS  Article  Google Scholar 

  35. [35]

    H Bethe Ann. Phys. Lpz. 5 325 (1930)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Higher Education, Science & Technology and Biotechnology, Govt. of West Bengal, India, under Grant Nos. 239(sanc.)/ST/P/S and T/16G-48/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Purkait.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Purkait, K., Samaddar, S., Halder, S. et al. Electron emission cross sections for collisions of heavy ions with atomic targets. Indian J Phys 94, 959–967 (2020). https://doi.org/10.1007/s12648-019-01558-9

Download citation

Keywords

  • Collision
  • Ionization
  • Cross sections

PACS No.

  • 34.70.+e