Dual-phase-lag model on micropolar thermoelastic rotating medium under the effect of thermal load due to laser pulse

Abstract

The present investigation deals with the deformation in micropolar thermoelastic medium with dual-phase-lag theory due to rotation subjected to the thermal laser pulse. The normal mode analysis technique is used to solve the problem. The material is heated by a non-Gaussian laser beam with pulse duration of 0.02 ps. The closed-form expressions of the normal stress, the tangential stress, the couple stress, and the temperature distribution are obtained. The variation of considered variables is depicted graphically to show the effect of rotation and time. Some particular cases of interest are deduced from the present investigation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    M A Biot J. Appl. Phys.27 240 (1956)

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    H W Lord and Y Shulman J. Mech. Phys. Solids15 299 (1967)

    ADS  Google Scholar 

  3. [3]

    A E Green and K A Lindsay J. Elast.2 1 (1972)

    Google Scholar 

  4. [4]

    A E Green and N Laws Arch. Rat. Mech. Anal.45 47 (1972)

    Article  Google Scholar 

  5. [5]

    A E Green and P M Naghdi J. Elast.31 189 (1993)

    Article  Google Scholar 

  6. [6]

    M N Ozisik and D Y Tzou J. Heat Transfer (ASME)116 526 (1994)

    Article  Google Scholar 

  7. [7]

    D Y Tzou J. Thermophys. and Heat Transfer9 686 (1995)

    Article  Google Scholar 

  8. [8]

    D Y Tzou J. Heat Transfer (ASME)117 8 (1995)

    Article  Google Scholar 

  9. [9]

    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys.92 148 (2014)

    ADS  Google Scholar 

  10. [10]

    M I A Othman and E M Abd-Elaziz J. Therm. Stress.38 1068 (2015)

    Article  Google Scholar 

  11. [11]

    A C Eringen Foundations of Micropolar Thermoelasticity (Berlin: Springer) (1970)

    Google Scholar 

  12. [12]

    W Nowacki Theory of Asymmetric Elasticity (Oxford: Pergamon) (1986)

    Google Scholar 

  13. [13]

    E Boschi and D Ieşan Meccanica8 154 (1973)

    Article  Google Scholar 

  14. [14]

    M I A Othman, W M Hasona and E M Abd-Elaziz Multi. Model. Materials and Struct.10 328 (2014)

    Article  Google Scholar 

  15. [15]

    M Marin, Rev. Acad. Canaria Cienc,8 101 (1996)

    MathSciNet  Google Scholar 

  16. [16]

    M Marin and A. Oechsner, Contin Mech Thermodyn.29 1365 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    M M. Bhatti, A Zeeshan, D Tripathi and R Ellahi, Ind. J. Phys.92 423 (2018)

    Article  Google Scholar 

  18. [18]

    R Jhora, D Tripathi, M M Bhatti and R Ellahi, Ind. J. Phys.92 1229 (2018)

    Article  Google Scholar 

  19. [19]

    T Hayat, R S Saif, R Ellahi, A Alsaedi and T Muhammad, J. Molecular Liquids240 209 (2017)

    Article  Google Scholar 

  20. [20]

    M Akbarzadeh, S Rashidi, N Karimi and R Ellahi, Advanced Powder Technology29 2243 (2018)

    Article  Google Scholar 

  21. [21]

    X-J Yang, Appl. Math. Letters64 193 (2017)

    MathSciNet  Article  Google Scholar 

  22. [22]

    X-J Yang and F Gao, Therm. Sci.21 133 (2017)

    Article  Google Scholar 

  23. [23]

    X-J Yang, Y Yugui, C Carlo and Z Mingzheng Therm. Sci.21 S129 (2017)

    Article  Google Scholar 

  24. [24]

    N Sarkar European Phys. J. Plus,132 1 (2017)

    ADS  Article  Google Scholar 

  25. [25]

    N Sarkar J. Therm. Stress.37 1 (2014)

    Article  Google Scholar 

  26. [26]

    N Sarkar and A Lahiri Int. J. Eng. Sci.51 310 (2011)

    Article  Google Scholar 

  27. [27]

    M Marin Acta Mech.122 155 (1997)

    MathSciNet  Article  Google Scholar 

  28. [28]

    M Hassan, M Marin, A Alsharif and R Ellahi Phys. Letters, Section A: General, Atomic and Solid State Phys., 382 2749 (2018)

    Article  Google Scholar 

  29. [29]

    X Wang and X Xu J. Appl. Phys.73 107 (2001)

    Article  Google Scholar 

  30. [30]

    F A McDonald J. Appl. Phys. Letters56 230 (1990)

    ADS  Article  Google Scholar 

  31. [31]

    H M Al-Qahtani and S K Datta J. Therm. Stress.31 569 (2008)

    Article  Google Scholar 

  32. [32]

    M N M Allam and A E Abouelregal J. Therm. Stress.37 455 (2014)

    Article  Google Scholar 

  33. [33]

    M N M Allam J. Theor. and Appl. Mech.55 155 (2017)

    Article  Google Scholar 

  34. [34]

    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys.92 1 (2014)

    Google Scholar 

  35. [35]

    M Schoenberg and D Censor Quart. Appl. Math.31 15 (1973)

    Article  Google Scholar 

  36. [36]

    A C Eringen Int. J. Eng. Sci.22 1113 (1984)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. A. Othman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$L_{1} = \frac{ - 1}{{\gamma^{ * 8} - A\gamma^{ * 6} + B\gamma^{ * 4} - C\gamma^{ * 2} + F}},N_{1} = a_{2} (a_{6} \gamma^{ * } - a_{7} ),N_{2} = a_{2} (a_{8} \gamma^{ * 2} - a_{9} ),$$
$$N_{3} = N_{2} (\gamma^{ * } - a_{1} ) + a_{2} N_{1} ,N_{4} = \frac{{N_{1} (a_{3} \gamma^{ * } - a_{4} ) - a_{2} N_{2} }}{{a_{5} }},N_{5} = N_{2} \left( {\frac{ - \,2x}{{r^{2} }}} \right) + \gamma^{ * 2} N_{1} ,$$
$$N_{6} = N_{1} \left( {\frac{ - \,2x}{{r^{2} }}} \right) - \gamma^{ * } N_{2} ,N_{7} = \left( {\frac{ - \,2x}{{r^{2} }}} \right)N_{5} - \frac{{\lambda \gamma^{ * } }}{{\rho C_{0}^{2} }}N_{6} - N_{3} ,H_{1n} = \frac{{s_{1} k_{n}^{4} - s_{2} k_{n}^{2} - s_{3} }}{{a_{2} a_{6} k_{n}^{2} - a_{2} a_{7} }},$$
$$N_{8} = \frac{\lambda }{{\rho {\kern 1pt} {\kern 1pt} C_{0}^{2} }}\left( {\frac{ - \,2x}{{r^{2} }}N_{5} - \gamma^{ * } N_{6} } \right) - N_{3} ,N_{9} = \frac{\lambda }{{\rho C_{0}^{2} }}\left( {\frac{ - \,2x}{{r^{2} }}} \right)N_{5} - \gamma^{ * } N_{6} - N_{3} ,H_{4n} = iaH_{1n} - k_{n} ,$$
$$N_{10} = \frac{\mu + k}{{\rho C_{0}^{2} }}\left( {\frac{ - 2x}{{r^{2} }}} \right)N_{6} - \frac{\mu }{{\rho C_{0}^{2} }}\gamma^{ * } N_{5} + \frac{k}{{\rho C_{0}^{2} }}N_{4} ,f^{ * } (x,t) = \left[ {t + \tau_{q} \left( {1 - \frac{t}{{t_{0} }}} \right)} \right]\exp \left( { - \frac{{x^{2} }}{{r^{2} }} - \frac{t}{{t_{0} }}} \right),$$
$$N_{11} = \frac{\mu }{{\rho C_{0}^{2} }}\left( {\frac{ - 2x}{{r^{2} }}} \right)N_{6} - \frac{\mu + k}{{\rho C_{0}^{2} }}\gamma^{ * } N_{5} - \frac{k}{{\rho C_{0}^{2} }}N_{4} ,N_{12} = \frac{{\eta_{0}^{2} \gamma }}{{\rho C_{0}^{4} }}\left( {\frac{ - 2x}{{r^{2} }}} \right)N_{4} ,N_{13} = \frac{{\eta_{0}^{2} \gamma }}{{\rho C_{0}^{4} }}\gamma^{ * } N_{4} ,$$
$$H_{2n} = k_{n}^{2} H_{1n} - a_{1} + a_{2} ,H_{3n} = \frac{{(a_{3} k_{n}^{2} - a_{4} - a_{2} H_{1n} )}}{{a_{5} }},H_{6n} = iaH_{4n} - \frac{\lambda }{{\rho C_{0}^{2} }}k_{n} H_{5n} - H_{2n} ,$$
$$H_{5n} = - k_{n} H_{1n} + ia,H_{7n} = \frac{\lambda }{{\rho C_{0}^{2} }}\left( {ia{\kern 1pt} H_{4n} - k_{n} H_{5n} } \right) - H_{2n} ,H_{11n} = \frac{{\gamma \eta_{0}^{2} }}{{\rho C_{0}^{4} }}(iaH_{3n} ),$$
$$H_{8n} = - k_{n} H_{5n} + \frac{\lambda ia}{{\rho C_{0}^{2} }}H_{4n} - H_{2n} ,H_{9n} = \frac{1}{{\rho C_{0}^{2} }}\left[ {ia\left( {\mu + k} \right)H_{5n} - k_{n} \mu H_{4n} + kH_{3n} } \right],$$
$$H_{10n} = \frac{1}{{\rho C_{0}^{2} }}\left[ {\left( {\mu + k} \right)k_{n} H_{4n} + ia\mu H_{4n} - kH_{3n} } \right],H_{12n} = \frac{{\gamma \eta_{0}^{2} }}{{\rho C_{0}^{4} }}( - k_{n} H_{3n} ),n = 1,2,3,4.$$

Appendix 2

$$L_{2} = \frac{ - 1}{{\gamma^{ * 4} - A_{1} \gamma^{ * 2} + A_{2} }},N_{1}^{ * } = \gamma^{ * } - r_{1} ,N_{2}^{ * } = \left( {\frac{ - 2x}{{r^{2} }}} \right)^{2} + \frac{\lambda }{{\rho C_{0}^{2} }}\gamma^{ * 2} - N_{1}^{ * } ,$$
$$N_{4}^{ * } = \frac{\lambda }{{\rho C_{0}^{2} }}\left( {\frac{ - 2x}{{r^{2} }}} \right)^{2} + \gamma^{ * 2} ,N_{3} = N_{2} (\gamma^{ * } - a_{1} ) + a_{2} N_{1} ,N_{4} = \frac{{N_{1} (a_{3} \gamma^{ * } - a_{4} ) - a_{2} N_{2} }}{{a_{5} }},$$
$$N_{5} = N_{2} \left( {\frac{ - 2x}{{r^{2} }}} \right) + \gamma^{ * 2} N_{1} ,N_{6} = N_{1} \left( {\frac{ - 2x}{{r^{2} }}} \right) - \gamma^{ * } N_{2} ,N_{7} = \left( {\frac{ - 2x}{{r^{2} }}} \right)N_{5} - \frac{{\lambda \gamma^{ * } }}{{\rho C_{0}^{2} }}N_{6} - N_{3} ,$$
$$N_{3}^{ * } = \frac{\lambda }{{\rho C_{0}^{2} }}\left[ {\left( {\frac{ - 2x}{{r^{2} }}} \right)^{2} + \gamma^{ * 2} } \right],N_{5}^{ * } = \frac{k + 2\mu }{{\rho C_{0}^{2} }}\left( {\frac{2x}{{r^{2} }}\gamma^{ * } } \right),N_{6}^{ * } = \frac{1}{{\rho C_{0}^{2} }}\left[ {\left( {\frac{ - 2x}{{r^{2} }}} \right)^{2} (k + \mu ) + \mu \gamma^{ * 2} } \right],$$
$$H_{1\hbar }^{ * } = \left( {\alpha_{\hbar }^{2} - r_{1} } \right),H_{2\ell }^{ * } = \frac{{a_{3} \alpha_{\ell }^{2} - r_{2} }}{{a_{5} }},H_{3\hbar }^{ * } = \frac{{\lambda \alpha_{\hbar }^{2} }}{{\rho C_{0}^{2} }} - a^{2} - H_{1\hbar }^{ * } ,H_{4\ell }^{ * } = ia\left( {\alpha_{\ell } - \frac{{\lambda \alpha_{\ell } }}{{\rho C_{0}^{2} }}} \right),$$
$$H_{5\hbar }^{ * } = \frac{\lambda }{{\rho C_{0}^{2} }}\left( {\alpha_{\hbar }^{2} - a^{2} } \right) - H_{1\hbar }^{ * } ,H_{6\hbar }^{ * } = \alpha_{\hbar }^{2} - \frac{{\lambda a^{2} }}{{\rho C_{0}^{2} }} - H_{1\hbar }^{ * } ,H_{7\ell }^{ * } = ia\left( {\frac{{\lambda \alpha_{\ell } }}{{\rho C_{0}^{2} }} - \alpha_{\ell } } \right),$$
$$H_{8\hbar }^{ * } = \frac{k + 2\mu }{{\rho C_{0}^{2} }}( - \;ia\alpha_{\hbar } ),H_{9\ell }^{ * } = \frac{1}{{\rho C_{0}^{2} }}\left[ {kH_{2\ell }^{ * } - a^{2} (k + \mu )} \right] + \alpha_{\ell }^{ * } ,$$
$$H_{10\hbar }^{ * } = \frac{1}{{\rho C_{0}^{2} }}\left[ {\mu \alpha_{\hbar }^{ * 2} - a^{2} (k + \mu )} \right],H_{11\ell }^{ * } = \frac{1}{{\rho C_{0}^{2} }}\left[ { - ia\mu \alpha_{\ell }^{ * } - ia\alpha_{\ell }^{ * } (k + \mu ) - kH_{2\ell }^{ * } } \right],$$
$$H_{12\ell }^{ * } = \frac{{\gamma \eta_{0}^{2} }}{{\rho C_{0}^{4} }}iaH_{2\ell }^{ * } ,H_{13\ell }^{ * } = \frac{{\gamma \eta_{0}^{2} }}{{\rho C_{0}^{4} }}( - \;\alpha_{\ell } )H_{2\ell }^{ * } ,\hbar = 1,2,\ell = 3,4.$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Othman, M.I.A., Abd-Elaziz, E.M. Dual-phase-lag model on micropolar thermoelastic rotating medium under the effect of thermal load due to laser pulse. Indian J Phys 94, 999–1008 (2020). https://doi.org/10.1007/s12648-019-01552-1

Download citation

Keywords

  • Rotation
  • Micropolar
  • Dual-phase-lag model
  • Thermal laser pulse
  • Normal mode

PACS Nos.

  • 44.05.+e
  • 81.40.Jj
  • 62.20. fq
  • 62.20.Dc
  • 62.40.+i