Burst-Finder: burst recognition for E-CALLISTO spectra


Investigations related to the impact caused by solar radio burst emissions on space weather forecasting and human activities have been ongoing for a long time. Solar activities based on radio spectra are recorded by using a radio spectrometer from ground Earth. Currently, manual observations are conducted for burst detection using the Compound Astronomical Low-Cost Low-Frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer that is able to generate more than one thousand spectra a day at each station. This Burst-Finder was developed to automatically detect the presence of solar radio bursts from the spectra using MATLAB. This study processed 1491 CALLISTO spectra images from 31 stations on 11 February 2014, in which Type II and Type III burst occurrences were detected. The success rate for burst detection was about 89%. This automated system offers CALLISTO uses an effortless and hassle-free tool for burst detection in order to monitor solar bursts during a complete cycle of 11 years.

This is a preview of subscription content, log in to check access.

Fig. 1

(credited to NASA)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    L J Lanzerotti Space Weather125 22 (2001)

    Google Scholar 

  2. [2]

    J P Raulin and A A Pacini Adv. Space Res. 35 754 (2005)

    Article  Google Scholar 

  3. [3]

    K Shibasaki, C E Alissandrakis and S Pohjolainen Energy Storage and Release through the Solar Activity Cycle 31 (2011)

  4. [4]

    Mittal et al. New Astron. 47 80 (2016)

    Article  Google Scholar 

  5. [5]

    Akimov et al. Mon. Not. R. Astron. Soc. 439 201 (2014)

    ADS  Article  Google Scholar 

  6. [6]

    Chen et al. Astrophys. J.787 59 (2014)

    ADS  Article  Google Scholar 

  7. [7]

    P J Kellogg and D M Malaspina The Sun, the Solar Wind, and the Heliosphere 245 (2011)

  8. [8]

    Payne et al. Nature160 625 (1947)

    ADS  Google Scholar 

  9. [9]

    G J Nelson and D B Melrose Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths 359 (1985)

  10. [10]

    J M Schmidt and I H Cairns Geophys. Res. Lett. 43 57 (2016)

    ADS  Article  Google Scholar 

  11. [11]

    N Gopalswamy and S Yashiro Astrophys. J. Lett. 736 17 (2011)

    ADS  Article  Google Scholar 

  12. [12]

    Kundu et al. International Astronomical Union Colloquium 610 (1994)

  13. [13]

    S Suzuki and G A Dulk Solar Radiophysics (1985)

  14. [14]

    Melniek et al. Solar Phys. 269 350 (2011)

    Google Scholar 

  15. [15]

    H A S Reid and H Ratcliffe Res. Astron. Astrophys. 14 773 (2014)

    ADS  Article  Google Scholar 

  16. [16]

    Mikhalev et al. Cosm. Res. 54 110 (2016)

    ADS  Article  Google Scholar 

  17. [17]

    I A Erinmez, J G Kappenman and W A Radasky J. Atmos. Sol. Terr. Phys.64 756 (2002)

    Article  Google Scholar 

  18. [18]

    Abidin et al. New Astron. Rev. 67 33 (2015)

    Article  Google Scholar 

  19. [19]

    Wen et al. Information Sciences 295 406 (2015)

    ADS  Article  Google Scholar 

  20. [20]

    K Simonyan and K Zisserman arXiv preprint arXiv1409 1556 (2014)

  21. [21]

    M Vidal and J M Amigo Chemom. Intell. Lab. Syst.117 148 (2012)

    Article  Google Scholar 

  22. [22]

    Afandi et al. Int. J. Adv. Sci. Eng. Inf. Technol.7 694 (2016)

    Google Scholar 

  23. [23]

    Afandi et al. Adv. Sci. Lett.23 1284 (2017)

    Google Scholar 

  24. [24]

    Benz et al. Earth Moon planets104 285 (2009)

  25. [25]

    J Kennewell and G Steward IPS Radio and Space Serv. Sydney (2003)

  26. [26]

    A O Benz, C Monstein and H Meyer Sol. Phys.226 151 (2005)

    ADS  Google Scholar 

  27. [27]

    M R Kundu Interscience Publication (1965)

  28. [28]

    J C Jones and G P Richards Advanced Maui Optical and Space Surveillance Technologies Conference (2014)

  29. [29]

    Hada et al. arXiv preprint arXiv (2016)

  30. [30]

    Ma et al. Pattern Recognit.61 582 (2017)

    Article  Google Scholar 

  31. [31]

    Lobzin et al. Pattern Recognit.61 582 (2017)

    Google Scholar 

  32. [32]

    Lobzin et al. Astrophys. J. Lett.701 L58 (2010)

    ADS  Article  Google Scholar 

  33. [33]

    V V Lobzin, I H Cairns and A Zaslavsky Space Phys.119 750 (2014)

    Google Scholar 

  34. [34]

    T K Das, T K Tarafdar and A K Sen Sol. Phys.176 184 (1997)

    ADS  Article  Google Scholar 

  35. [35]

    J S Lim Prentice Hall 710 (1990)

Download references


This study is made possible by the FRGS/1/2015/SG02/UNISZA/02/1 Grant and 68006/INSENTIF/60. The authors gratefully acknowledge of ETH Zurich for the free access to spectrum data. They also thankful to founder of CALLISTO, Christian Monstein and East Coast Environmental Research Institute in Universiti Sultan Zainal Abidin for the moral support. Special thanks is also dedicated to other researchers in the Electromagnetic Research Group (EMRG) for their assistance in this work.

Author information



Corresponding author

Correspondence to N. H. Sabri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afandi, N.Z.M., Sabri, N.H., Umar, R. et al. Burst-Finder: burst recognition for E-CALLISTO spectra. Indian J Phys 94, 947–957 (2020). https://doi.org/10.1007/s12648-019-01551-2

Download citation


  • Solar radio burst
  • Radio spectra
  • Automatic detection


  • 07.55 Ge