Switchable transverse-mode operation of an actively mode-locked EDF laser based on low-modal-crosstalk mode MUX/DEMUX

Abstract

In this paper, we report an all-fiber actively mode-locked erbium-doped fiber laser based on the mode multiplexer/demultiplexer (MUX/DEMUX). Higher-order mode and mode-locked pulse outputs can be realized simultaneously. The mode-locking is achieved by using a LiNbO3 Mach–Zehnder intensity modulator. Multiple linearly polarized (LP) modes in the ring fiber laser are generated by mode MUX/DEMUX. For different spatial modes (LP01, LP11, LP21, hybrid modes), 17.32 ns, 20.40 ns, 23.00 ns and 17.24 ns mode-locked pulse trains are successfully obtained, respectively. The output laser operates at the fundamental frequency of 8.064 MHz with center wavelengths of 1528.71 nm for LP01 mode, 1528.30 nm for LP11 mode, 1530.45 nm for LP21 mode and 1530.05 nm for hybrid mode. Moreover, we also measure the slope efficiency, spectrum and intensity distribution. The results show that the proposed fiber laser has potential applications in mode-division-multiplexed systems, optical sensing and optical fiber communication.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    L S Yan, X Liu and W Shieh IEEE Photon. J.3 325 (2011)

    ADS  Article  Google Scholar 

  2. [2]

    R J Essiambre, G Kramer, P J Winzer, G J Foschini and B Goebel J. Lightw. Technol.28 662 (2010)

    ADS  Article  Google Scholar 

  3. [3]

    D J Richardson, J M Fini and L E Nelson Nat. Photon.7 354 (2013)

    ADS  Article  Google Scholar 

  4. [4]

    S Ngcobo, I Litvin, L Burger and A Forbes Nat. Commun.4 2289 (2013)

    ADS  Article  Google Scholar 

  5. [5]

    Y Jung, Z Li, N H L Wong, J M O Daniel, J K Sahu, S U Alam and D J Richardson Optical Fiber Communications Conference & Exhibition (2014)

  6. [6]

    B Sun, A Wang, L Xu, C Gu, Y Zhou, Z Lin, H Ming and Q Zhan Opt. Lett.38 667 (2013)

    ADS  Article  Google Scholar 

  7. [7]

    Y Zhou, A Wang, C Gu, B Sun, L Xu, F Li, D Chung and Q Zhan Opt. Lett.41 548 (2016)

    ADS  Google Scholar 

  8. [8]

    D Mao, T Feng, W Zhang, H Lu, Y Jiang, P Li, B Jiang, Z Sun and J Zhao Appl. Phys. Lett.110 021107 (2017)

    ADS  Article  Google Scholar 

  9. [9]

    K Wei, W Zhang, L Huang, D Mao, F Gao, T Mei and J Zhao Opt. Express25 2733 (2017)

    ADS  Article  Google Scholar 

  10. [10]

    Y Zhou, K Yan, R S Chen, C Gu, L X Xu, A T Wang and Q Zhan Appl. Phys. Lett.110 161104 (2017)

    ADS  Article  Google Scholar 

  11. [11]

    R Chen, J Wang, X Zhang, A Wang, H Ming, F Li, D Chung and Q Zhan Opt. Lett.43 755 (2018)

    ADS  Google Scholar 

  12. [12]

    B Sun, A Wang, C Gu, G Chen, L Xu, D Chung and Q Zhan Opt. Lett.40 1691 (2015)

    ADS  Google Scholar 

  13. [13]

    J Dong and K S Chiang IEEE Photon. Technol. Lett.26 1766 (2014)

    ADS  Article  Google Scholar 

  14. [14]

    B Sun, A Wang, L Xu, C Gu, Z Lin, H Ming and Q Zhan Opt. Lett.37 464 (2012)

    ADS  Article  Google Scholar 

  15. [15]

    T Liu, S P Chen and J Hou Opt. Lett.41 5692 (2016)

  16. [16]

    N Wang, J E Antonio-Lopez, J C Alvarado Zacarias, Z Sanjabi Eznaveh, H Wen, P Sillard, S Leon-Saval, A Schulzgen, R Amezcua-Correa and G Li European Conference on Optical Communication (2016)

  17. [17]

    F Wang, F Shi, T Wang, F Pang, T Wang and X Zeng IEEE Photon. Technol. Lett.29 747 (2017)

    ADS  Article  Google Scholar 

  18. [18]

    Y Shen, G Ren, Y Yang, S Yao, Y Wu, Y Jiang, Y Xu, W Jin, B Zhu and S Jian Opt. Laser Technol.98 1 (2018)

    ADS  Article  Google Scholar 

  19. [19]

    Z Zhang, Y Cai, J Wang, H Wan and L Zhang IEEE J. Sel. Top. Quantum Electron.24 1 (2018)

    ADS  Google Scholar 

  20. [20]

    T Wang, F Shi, Y Huang, J Wen, Z Luo, F Pang, T Wang and X Zeng Opt. Express26 11850 (2018)

    ADS  Article  Google Scholar 

  21. [21]

    M Salsi, C Koebele, D Sperti, P Tran, H Mardoyan, P Brindel, S Bigo, A Boutin, F Verluise, P Sillard, M Astruc, L Provost and G Charlet J. Lightw. Technol.30 618 (2012)

    ADS  Article  Google Scholar 

  22. [22]

    R Ryf, S Randel, A H Gnauck, C Bolle, A Sierra, S Mumtaz, M Esmaeelpour, E C Burrows, R J Essiambre, P J Winzer, D W Peckham, A H McCurdy and R Lingle J. Lightw. Technol.30 521 (2012)

    ADS  Article  Google Scholar 

  23. [23]

    A Li, A Al Amin, X Chen and W Shieh Opt. Express19 8808 (2011)

    ADS  Article  Google Scholar 

  24. [24]

    R Ismaeel, T Lee, B Oduro, Y Jung and G Brambilla Opt. Express22 11610 (2014)

    ADS  Article  Google Scholar 

  25. [25]

    J D Love and N Riesen Opt. Lett.37 3990 (2012)

    ADS  Article  Google Scholar 

  26. [26]

    A Li, J Ye, X Chen and W Shieh IEEE Photon. Technol. Lett.25 1985 (2013)

  27. [27]

    S H Chang, H S Chung, R Ryf, N K Fontaine, C Han, K J Park, K Kim, J C Lee, J H Lee, B Y Kim and Y K Kim Opt. Express23 7164 (2015)

    ADS  Article  Google Scholar 

  28. [28]

    F Ren, J Yu and J Wang Opt. Laser Technol.101 21 (2018)

    ADS  Article  Google Scholar 

  29. [29]

    F Ren, X Huang, Y Zhang, X Fan, T Zhangsun, W Chen and J Wang Opt. Laser Technol.107 325 (2018)

    ADS  Article  Google Scholar 

  30. [30]

    M Kasahara, K Saitoh, T Sakamoto, N Hanzawa, T Matsui, K Tsujikawa and F Yamamoto J. Lightw. Technol.32 1337 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61605004) and supported by the Fundamental Research Funds for the Central Universities, China (No. FRF-TP-16-046A1). This work is also supported by State Key Laboratory of Advanced Optical Communication Systems Networks, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fang Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhangsun, T., Ren, F., Lu, X. et al. Switchable transverse-mode operation of an actively mode-locked EDF laser based on low-modal-crosstalk mode MUX/DEMUX. Indian J Phys 94, 1071–1078 (2020). https://doi.org/10.1007/s12648-019-01542-3

Download citation

Keywords

  • Mode-locked fiber lasers
  • Mode switching
  • Mode MUX/DEMUX

PACS Nos

  • 42.55.Wd
  • 42.60.Fc