Nanosecond pulses generation with rose gold nanoparticles saturable absorber


We demonstrate a mode-locked nanosecond erbium-doped fiber laser using gold nanoparticles saturable absorber. The gold nanoparticles were obtained through sodium borohydrate reduction method and made into a film structure by embedding into poly (vinyl alcohol). The laser directly produces nanosecond pulses with stable mode locking at a pump threshold of 157 mW. Resultant output pulses have central wavelength, pulse duration and repetition rate of 1561 nm, 436 ns and 1 MHz, respectively. The average output power was measured to be 6.94 mW under the pump power of 245 mW, corresponding to single pulse energy of 6.8 nJ. The experimental results show that gold nanoparticles are a promising material for ultrafast laser systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. [1]

    D Dornfeld, S Min, and Y Takeuchi CIRP Ann. Manuf. Technol.55 745 (2006)

    Article  Google Scholar 

  2. [2]

    J Clowes Optik Photonik3 36 (2008)

    Article  Google Scholar 

  3. [3]

    L Luo, P Chu, and H Liu IEEE Photon. Technol. Lett.12 269 (2000)

    ADS  Article  Google Scholar 

  4. [4]

    P T Teng, F Y Chang, and Y T Chang Adv. Mater. Res.12 209 (2014)

    Article  Google Scholar 

  5. [5]

    D Mao, X M Liu, L R Wang, X H Hu, and X H Lu Laser Phys. Lett.8 134 (2010)

    Article  Google Scholar 

  6. [6]

    X Feng, H Tam, and P Wai Opt. Exp.14 8205 (2006)

    ADS  Article  Google Scholar 

  7. [7]

    L Chen, M Zhang, C Zhou, Y Cai, L Ren, and Z Zhang Electron. Lett.45 731 (2009)

    ADS  Article  Google Scholar 

  8. [8]

    Q Bao, H Zhang, Y Wang, Z Ni, Y Yan, Z X Shen, K P Loh, and D Y Tang Adv. Funct. Mater.19 3077 (2009)

    Article  Google Scholar 

  9. [9]

    M B Hisyam, M F Rusdi, A A Latiff, and S W Harun IEEE J. Sel. Top. Quantum Electron.23 39 (2016)

    ADS  Article  Google Scholar 

  10. [10]

    P Yan, R Lin, S Ruan, A Liu, and H Chen Sci. Rep.5 8690 (2015)

    Article  Google Scholar 

  11. [11]

    J Xu, S Wu, J Liu, Q Wang, Q H Yang, and P Wang Opt. Commun. 285 4466 (2012)

    ADS  Article  Google Scholar 

  12. [12]

    I A M Alani, B A Ahmad, M H M Ahmed, A A Latiff, A H H Al-Masoodi, M Q Lokman, and S W Harun Indian J. Phys. 93 93 (2019)

    ADS  Article  Google Scholar 

  13. [13]

    J Ren, S Wang, Z Cheng, H Yu, H Zhang, Y Chen, L Mei, and P Wang Opt. Exp. 23 5607 (2015)

    ADS  Article  Google Scholar 

  14. [14]

    Z Kang, Y Xu, L Zhang, Z Jia, L Liu, D Zhao, Y Feng, G Qin, and W Qin Appl. Phys. Lett.103 041105 (2013)

    ADS  Article  Google Scholar 

  15. [15]

    T Jiang, Y Xu, Q Tian, L Liu, Z Kang, R Yang, G Qin, and W Qin Appl. Phys. Lett. 101 151122 (2012)

    ADS  Article  Google Scholar 

  16. [16]

    Z Kang, X Guo, Z Jia, Y Xu, L Liu, D Zhao, G Qin, and W Qin Opt. Mater. Exp. 3 1986 (2013)

    ADS  Article  Google Scholar 

  17. [17]

    H B Liao, R F Xiao, J S Fu, P Yu, G K L Wong, and P Sheng Appl. Phys. Lett. 70 1 (1997)

    ADS  Article  Google Scholar 

  18. [18]

    K H Kim, A Husakou, and J Herrmann Opt. Exp. 18 7488 (2010)

    ADS  Article  Google Scholar 

  19. [19]

    H Baida, D Mongin, D Christofilos, G Bachelier, A Crut, P Maioli, N D Fatti, and F Vallée Phys. Rev. Lett.107 057402 (2011)

    ADS  Article  Google Scholar 

  20. [20]

    U Gurudas, E Brooks, D M Bubb, S Heiroth, T Lippert, and A Wokaun J. Appl. Phys. 104 073107 (2008)

    ADS  Article  Google Scholar 

  21. [21]

    A R Muhammad, M T Ahmad, R Zakaria,, H R A Rahim, S F A Z Yusoff, K S Hamdan, H Arof, and S W Harun Chin. Phys. Lett.34 034205 (2017)

    ADS  Article  Google Scholar 

  22. [22]

    M T Ahmad, A R Muhammad, R Zakaria, H R A Rahim, K S Hamdan, H H M Yusof, H Arof, and S W Harun Laser Phys. 27 11 (2017)

    Google Scholar 

  23. [23]

    Q Bao, H Zhang, Z Ni, Y Wang, L Polavarapu, Z Shen, Q H Xu, D Tang, and K P Loh Nano Res.4 297 (2011)

    Article  Google Scholar 

Download references


This research has financially support by University of Malaya (Grant No. BK084-2017) and Universiti Teknikal Malaysia Melaka (Grant No. PJP/2018/FKEKK(1B)/S01613).

Author information



Corresponding author

Correspondence to S. W. Harun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosol, A.H.A., Latiff, A.A., Abdul Khudus, M.I.M. et al. Nanosecond pulses generation with rose gold nanoparticles saturable absorber. Indian J Phys 94, 1079–1083 (2020).

Download citation


  • Fiber lasers
  • Nanosecond pulses
  • Gold nanoparticles


  • 42.55.Wd
  • 42.60.Gd
  • 42.70.Nq