Synthesis of chemical spray pyrolyzed Cu2FeSnS4 thin films for solar cells


In this paper, we have successfully prepared Cu2FeSnS4 (CFTS) thin films by a facile spray pyrolysis method. In order to optimize the synthesis conditions of the CFTS thin films, two series of experiments were performed. In the first series, the thin films were deposited at a substrate temperature of 370 °C for different spray durations (td) of 20, 40 and 60 min. And in the second, the CFTS thin films were annealed in the sulfur atmosphere at a temperature of 450 °C for 30 min. Moreover, the X-ray diffractograms showed that the as-deposited and the post-annealed CFTS thin films revealed a stannite structure. The post-annealed CFTS thin films are considered as an ideal absorber in solar cells because of a large absorption coefficient (105 cm−1) and a direct band gap (1.55 eV). The activation energies Ea obtained from both angular frequency and DC conductivity are found to be 1 and 0.97 eV, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    F Ozel J. Alloy. Compd.657 157 (2016)

  2. [2]

    H Guan, H Shen, B Jiao and X Wang Mater. Sci. Semicond. Process. 25 159 (2013)

    Article  Google Scholar 

  3. [3]

    S Chatterjee and A J Pal Sol. Energy Mater. Sol. Cells.160 233 (2017)

    Article  Google Scholar 

  4. [4]

    X Meng, H Deng, L Sun, P Yang and J Chu Mater. Lett.161 427 (2015)

    Article  Google Scholar 

  5. [5]

    M Cao, C Li, B Zhang, J Huang, L Wang and Y Shen J. Alloy. Compd.622 695 (2015)

    Article  Google Scholar 

  6. [6]

    K Mokurala, P Bhargava and S Mallick Mater. Chem. Phys.147 371 (2014)

    Article  Google Scholar 

  7. [7]

    C Yan et al. Chem. Commun.48 2603 (2012)

    Article  Google Scholar 

  8. [8]

    R R Prabhakar et al. ACS Appl. Mater. Interfaces6 17661 (2014)

    Article  Google Scholar 

  9. [9]

    D Perednis and L J Gauckler J. Electroceram.14 103 (2005)

    Article  Google Scholar 

  10. [10]

    S Dridi, N Bitri and M Abaab Mater. Lett. 204 61 (2017)

    Article  Google Scholar 

  11. [11]

    S Mahjoubi, N Bitri, H Bouzouita, M Abaab and I Ly Appl. Phys. A123 452 (2017)

    ADS  Article  Google Scholar 

  12. [12]

    S K S Basha and M C Rao Ceram. Int. 44 648 (2018)

  13. [13]

    K Mokurala, S Mallick and P Bhargava J. Power Sources305 134 (2016)

    ADS  Article  Google Scholar 

  14. [14]

    G El Fidha, N Bitri, S Mahjoubi, M Abaab and I Ly Mater. Lett. 215 62 (2018)

    Article  Google Scholar 

  15. [15]

    M Adelifard J. Anal. Appl. Pyrolysis. 122 209 (2016)

  16. [16]

    X Jiang, W Xu, R Tan, W Song and J. Chen Mater. Lett. 102103 39 (2013)

    Article  Google Scholar 

  17. [17]

    P Kevin, S N Malik, M A Malik and P O’Brien Mater. Lett. 152 60 (2015)

    Article  Google Scholar 

  18. [18]

    A Hannachi, H Oueslati, N Khemiri and M Kanzari Opt. Mater.72 702 (2017)

    ADS  Article  Google Scholar 

  19. [19]

    N Kamoun, H Bouzouita and B Rezig Thin Solid Films.515 5949 (2007)

    ADS  Article  Google Scholar 

  20. [20]

    C R Mariappan, G Govindaraj, S V Rathan and G V Prakash Mater. Sci. Eng. B123 63 (2005)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Dridi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dridi, S., El Fidha, G., Bitri, N. et al. Synthesis of chemical spray pyrolyzed Cu2FeSnS4 thin films for solar cells. Indian J Phys 94, 1097–1102 (2020).

Download citation


  • CFTS thin films
  • Spray pyrolysis
  • Stannite structure
  • Electrical properties
  • Solar cells


  • 71.20.Nr