Analysis of neutron capture cross section using different level density models on cadmium isotopes up to 250 keV neutron-induced energy and GEANT4 simulation


The neutron capture cross-sectional reactions for 106,108,110,111,112,113,114,116Cd isotopes have been calculated with different level density models which are constant temperature Fermi gas (CTFG) model, back-shifted Fermi gas model, generalized superfluid model and Hartree–Fock–Bogoliubov model by using TALYS 1.9 and EMPIRE 3.2 codes for incident neutron energies up to 250 keV. The obtained results have been analyzed with each level density model parameters existing in Reference Input Parameter Library (RIPL-3) and available experimental data. As an outcome, to obtain more precise and coherent calculations with the experimental values, level density model and its parameters have been determined. Also, hadronic interactions of low-energy neutrons have been investigated for a situation by using GEANT4.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. [1]

    A R L de Musgrovet, B J Allent and R L Macklin J. Phys. G: Nucl. Phys.4(5) 771 (1978)

  2. [2]

    HA Bethe Phys. Rev.50 332 (1936)

    ADS  Article  Google Scholar 

  3. [3]

    A Gilbert, A G W Cameron Can. J. Phys.43 1446 (1965)

    ADS  Article  Google Scholar 

  4. [4]

    Y Byun Ph.D. Thesis (Ohio University, USA) (2013)

  5. [5]

    [5] D Suchiang, J Jeremiah, B Jyrwa and L Khongiang Ann. Nucl. Energy65 97 (2014)

    Article  Google Scholar 

  6. [6]

    S Bedenko, J Jeremiah and V Knyshev Mater. Sci. Eng. (IOP Conf. Ser.)135 012004 (2016)

  7. [7]

    R Ghosh, S Badwar, B. Lawriniang et al. J. Radioanal Nucl. Chem.307 1481 (2016)

    Article  Google Scholar 

  8. [8]

    İ H Sarpün, A Aydın, A Kaplan, H Koca and E Tel Ann. Nucl. Energy70 175 (2014)

    Article  Google Scholar 

  9. [9]

    A Kaplan, H Özdoğan, A Aydın and E Tel J. Fusion Energ.32(3) 344 (2013)

    ADS  Article  Google Scholar 

  10. [10]

    B Demir, İ H Sarpün, A Kaplan, V Capali, A Aydın and E Tel J. Fusion Energ.34(4) 808 (2015)

    Article  Google Scholar 

  11. [11]

    A Koning, S Hilaire and S Goriely TALYS User Manual (NRG, The Netherlands) (2017)

    Google Scholar 

  12. [12]

    M Herman, et al EMPIRE User’s Manual (2013)

  13. [13]

    RIPL–Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations, Nucl. Data Sheets 110 (2009)

  14. [14]

    Experimental Nuclear Reaction Data (EXFOR/CSISRS), Available from

  15. [15]

    K Wisshak, F Voss and F Kappeler Phys. Rev. C66 025801 (2002)

    ADS  Article  Google Scholar 

  16. [16]

    M Lindner, R J Nagle and J H Landrum Nucl. Sci. Eng.59 381 (1976)

    Article  Google Scholar 

  17. [17]

    A J Koning, S Hilaire and M C Duijvestijn (AIP Conf. Proc 769) 1154 (2005)

  18. [18]

    W Dilg, W Schantl and H Vonach Nucl. Phys. A217 269 (1973)

    ADS  Article  Google Scholar 

  19. [19]

    A V Ignatyuk, K K Istekov and G N Smirenkin Sov. J. Nucl. Phys.29 450 (1979)

    Google Scholar 

  20. [20]

    A V Ignatyuk, J L Weil and S Raman Phys. Rev. C47 1504 (1993)

    ADS  Article  Google Scholar 

  21. [21]

    Geant4 Collaboration, Geant4 User’s Guide for Application Developers (2014)

  22. [22]

    Z I Ok, V G Nikolenko and A B Popov Dubna Rep.85 133 (1985)

    Google Scholar 

  23. [23]

    W G Vonach and A B Smith Nucl. Phys.78 389 (1966)

    Article  Google Scholar 

  24. [24]

    A B Popov, G S Samosvat and Z I Ok Dubna Rep.84 669 (1984)

    Google Scholar 

  25. [25]

    W P Poenitz and J F Whalen Argonne National Laboratory Reports80 (1983)

Download references

Author information



Corresponding author

Correspondence to Veli Çapalı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çapalı, V. Analysis of neutron capture cross section using different level density models on cadmium isotopes up to 250 keV neutron-induced energy and GEANT4 simulation. Indian J Phys 94, 1041–1049 (2020).

Download citation


  • Cross section
  • Reactor materials
  • Level density models
  • Hadronic interactions


  • 21.60.-n
  • 21.30.Fe
  • 32.80.Cy
  • 21.10.Ma
  • 28.50.-k
  • 28.41.-i