Transverse shear viscosity to entropy density for the general anisotropic black brane in Horava–Lifshitz gravity

Abstract

In this paper, we calculate the ratio of transverse shear viscosity to entropy density for the general anisotropic black brane in Horava–Lifshitz gravity. There is a well-known conjecture that states this ratio should be larger than \(\frac{{1}}{4\pi }\). The ratio of shear viscosity to entropy density is proportional to the inverse square coupling of quantum thermal field theory, \(\frac{{\eta }}{s} \sim \frac{{1}}{\lambda ^2 }\). Especially in QFT with gravity dual the stronger coupling means the shear viscosity per entropy density gets closer to the lower bound of \(\frac{{1}}{4\pi }\). The KSS bound preserves in the anisotropic scaling model.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J M Maldacena Int. J. Theor. Phys. 38 1113 (1999) [Adv. Theor. Math. Phys. 2 231 (1998)]

  2. [2]

    O Aharony, S S Gubser, J M Maldacena, H Ooguri and Y Oz Phys. Rept.323 183 (2000)

    ADS  Article  Google Scholar 

  3. [3]

    J Casalderrey-Solana, H Liu, D Mateos, K Rajagopal and U A Wiedemann, arXiv:1101.0618 [hep-th]

  4. [4]

    D Forster Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin: Reading) (1975)

    Google Scholar 

  5. [5]

    S Bhattacharyya, V E Hubeny, S Minwalla and M Rangamani JHEP0802 045 (2008)

    ADS  Article  Google Scholar 

  6. [6]

    M Rangamani Class. Quant. Grav.26 224003 (2009)

    ADS  Article  Google Scholar 

  7. [7]

    L D Landau and E M Lifshitz Fluid Mechanics (Course of Theoretical Physics, Vol. 6). (Butterworth-Heinemann) (1965)

  8. [8]

    N Ambrosetti, J Charbonneau and S Weinfurtner, arXiv:0810.2631 [gr-qc]

  9. [9]

    J Bhattacharya, S Bhattacharyya, S Minwalla and A Yarom JHEP1405 147 (2014)

    ADS  Article  Google Scholar 

  10. [10]

    P Kovtun J Phys A45 473001 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    DT Son Nucl. Phys. B (Proc. Suppl.)192–193 113–118 (2009)

  12. [12]

    J I Kapusta and C Gale, Finite-Temperature Field Theory (Cambridge: Cambridge University Press) (2006)

    Google Scholar 

  13. [13]

    D Mateos and D Trancanelli JHEP1107 054 (2011)

    ADS  Article  Google Scholar 

  14. [14]

    D Mateos and D Trancanelli Phys. Rev. Lett. 107 101601 (2011)

    ADS  Article  Google Scholar 

  15. [15]

    V Jahnke, A S Misobuchi and D Trancanelli JHEP1501 122 (2015)

    ADS  Article  Google Scholar 

  16. [16]

    A Rebhan and D Steineder Phys. Rev. Lett. 108 021601 (2012)

    ADS  Article  Google Scholar 

  17. [17]

    K A Mamo JHEP1210 070 (2012)

    ADS  Article  Google Scholar 

  18. [18]

    D Blas, O Pujolas and S Sibiryakov JHEP1104 018 (2011)

    ADS  Article  Google Scholar 

  19. [19]

    R B Griffiths Phys. Rev. Lett. 24 715 (1970)

    ADS  Article  Google Scholar 

  20. [20]

    D T Son and A O Starinets Ann. Rev. Nucl. Part. Sci. 57 95 (2007)

    ADS  Article  Google Scholar 

  21. [21]

    G Policastro, D T Son and A O Starinets Phys. Rev. Lett. 87 081601 (2001)

    ADS  Article  Google Scholar 

  22. [22]

    P Kovtun, D T Son and A O Starinets Phys. Rev. Lett. 94 111601 (2005)

    ADS  Article  Google Scholar 

  23. [23]

    G Policastro, D T Son and A O Starinets JHEP0209 043 (2002)

    ADS  Article  Google Scholar 

  24. [24]

    P Kovtun, D T Son and A O Starinets JHEP0310 064 (2003)

    ADS  Article  Google Scholar 

  25. [25]

    D T Son Nucl. Phys. B (Proc. Suppl.)192–193 113–118 (2009).

  26. [26]

    S A Hartnoll, D M Ramirez and J E Santos JHEP1603 170 (2016)

    ADS  Article  Google Scholar 

  27. [27]

    M Sadeghi Eur. Phys. J. C78 875 (2018)

    ADS  Article  Google Scholar 

  28. [28]

    M Sadeghi Mod. Phys. Lett. A33 1850220 (2018)

    ADS  Article  Google Scholar 

  29. [29]

    W J Pan and Y C Huang Phys. Rev. D94 104029 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    M Brigante, H Liu, R C Myers, S Shenker and S Yaida Phys. Rev. D77 126006 (2008)

    ADS  Article  Google Scholar 

  31. [31]

    M Brigante, H Liu, R C Myers, S Shenker and S Yaida Phys. Rev. Lett. 100 191601 (2008)

    ADS  Article  Google Scholar 

  32. [32]

    I P Neupane and N Dadhich Class. Quant. Grav.26 015013 (2009)

    ADS  Article  Google Scholar 

  33. [33]

    M Sadeghi and S Parvizi Class. Quant. Grav. 33 035005 (2016)

    ADS  Article  Google Scholar 

  34. [34]

    S Parvizi and M Sadeghi Eur. Phys. J. C79 113 (2019)

    ADS  Article  Google Scholar 

  35. [35]

    P Burikham and N Poovuttikul Phys. Rev. D94 106001 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    X H Ge, S J Sin, S F Wu and G H Yang Phys. Rev. D80 104019 (2009)

    ADS  Article  Google Scholar 

  37. [37]

    X H Ge Sci. China Phys. Mech. Astron. 59 630401 (2016)

    Article  Google Scholar 

  38. [38]

    R G Cai, Z Y Nie and Y W Sun Phys. Rev. D78 126007 (2008)

    ADS  Article  Google Scholar 

  39. [39]

    Y Z Li, H S Liu and H Lu JHEP1802 166 (2018)

    ADS  Google Scholar 

  40. [40]

    M H Dehghani and M H Vahidinia JHEP1310 210 (2013)

    ADS  Article  Google Scholar 

  41. [41]

    Y L Wang and X H Ge Phys. Rev. D94 066007 (2016)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

Author would like to thank Shahrokh Parvizi for useful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M. Transverse shear viscosity to entropy density for the general anisotropic black brane in Horava–Lifshitz gravity. Indian J Phys 94, 1119–1122 (2020). https://doi.org/10.1007/s12648-019-01523-6

Download citation

Keywords

  • Fluid/gravity duality
  • AdS/CFT duality
  • Transverse shear viscosity
  • Green–Kubo formula

PACS Nos.

  • 11.10.Jj
  • 11.10.Wx
  • 11.15.Pg
  • 11.25.Tq