Phonon and thermodynamic properties of bcc transition metals using MEAM potentials


Recently, Jin et al. (Appl. Phys. A 120:189, 2015) have improved the modified embedded atom method (MEAM) potentials for metals. The validity of those potentials for the body-centered cubic (bcc) transition metals, Cr, Fe, Mo, Nb, Ta, V, and W, is examined by reproducing the phonon and thermodynamic properties, studied both experimentally and theoretically a lot. The phonon dispersion curve and density of states are plotted. Also, several thermal properties, including the linear thermal expansion coefficient, molar heat capacity at constant volume, Debye temperature, and Grüneisen parameter, are calculated within the quasiharmonic approximation. All results are discussed in light of available calculated and measured data. Though some discrepancies are observed in the individual results, the phonon and thermodynamic properties considered here are predicted reasonably well by the present model for these metals on the whole.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. [1]

    M S Daw and M I Baskes Phys. Rev. B29 6443 (1984)

    ADS  Google Scholar 

  2. [2]

    M I Baskes Phys. Rev. Lett.59 2666 (1987)

    ADS  Google Scholar 

  3. [3]

    M I Baskes Phys. Rev. B46 2727 (1992)

    ADS  Google Scholar 

  4. [4]

    R Pasianot, D Farkas and E J Savino Phys. Rev. B43 6952 (1991)

    Google Scholar 

  5. [5]

    D J Oh and R A Johnson J. Mater. Res.3 471 (1988)

    ADS  Google Scholar 

  6. [6]

    B Zhang, Y Ouyang, S Liao and Z Jin Physica B262 218 (1999)

    Google Scholar 

  7. [7]

    B Zhang, W Hu and X Shu Theory of Embedded Atom Method and its Application to Materials Science—Atomic Scale Materials Design Theory (Changsha: Hunan University Press, 2003)

    Google Scholar 

  8. [8]

    H Jin, J An and Y Jong Appl. Phys. A120 189 (2015)

    Google Scholar 

  9. [9]

    H Jin, J Pak and Y Jong Appl. Phys. A123 257 (2017)

    Google Scholar 

  10. [10]

    C Jon, H Jin and C Hwang Radiat. Eff. Defects Solids172 575 (2017)

    MathSciNet  Google Scholar 

  11. [11]

    S Chantasiriwan and F Milstein Phys. Rev. B58 5998 (1998)

    ADS  Google Scholar 

  12. [12]

    Y Shimomura, K Sugio, Y Kogure and M Doyama Comput. Mater. Sci.14 36 (1999)

    Google Scholar 

  13. [13]

    W Hu and F Masahiro Model. Simul. Mater. Sci. Eng.10 707 (2002)

    ADS  Google Scholar 

  14. [14]

    S Ryu and W Cai Model. Simul. Mater. Sci. Eng.16 085005 (2008)

    ADS  Google Scholar 

  15. [15]

    X J Zhang, J M Zhang and K W Xu Physica B391 286 (2007)

    Google Scholar 

  16. [16]

    V Gairola, P D Semalty and P N Ram Indian J. Phys.88 171 (2014)

    Google Scholar 

  17. [17]

    V Gairola, P D Semalty and P N Ram Pramana J. Phys.80 1041 (2013)

    MathSciNet  Google Scholar 

  18. [18]

    M Doyama and Y Kogure Radiat. Eff. Defects Solids142 107 (1997)

    ADS  Google Scholar 

  19. [19]

    M W Finnis and J E Sinclair Philos. Mag. A50 45 (1984)

    ADS  Google Scholar 

  20. [20]

    S Aubry and D A Hughes Phys. Rev. B73 224116 (2006)

    ADS  Google Scholar 

  21. [21]

    R Hultgern, R L Orr, P D Anderson and K K Kelley Selected Values of Thermodynamic Properties of Metals and Alloys (New York: Wiley, 1963)

    Google Scholar 

  22. [22]

    F H Stillinger and T A Weber Phys. Rev. B31 5262 (1985)

    ADS  Google Scholar 

  23. [23]

    K Ding and H C Andersen Phys. Rev. B34 6987 (1986)

    ADS  Google Scholar 

  24. [24]

    F Seitz and D Turnbull Solid State Physics vol. 16 (New York: Academic, 1964)

    Google Scholar 

  25. [25]

    H B Moller and A R Makintosh Inelastic Scattering of Neutrons (Vienna: IAEA, 1965)

    Google Scholar 

  26. [26]

    V J Minkiewicz, G Shirane and R Nathans Phys. Rev.162 528 (1967)

    Google Scholar 

  27. [27]

    A D B Woods and S H Chen Solid State Commun.2 233 (1964)

    ADS  Google Scholar 

  28. [28]

    Y Nakagawa and A D B Woods Phys. Rev. Lett.11 271 (1963)

    ADS  Google Scholar 

  29. [29]

    A D B Woods Phys. Rev.136 A781 (1964)

  30. [30]

    R Colella and B W Batterman Phys. Rev. B1 3913 (1970)

    ADS  Google Scholar 

  31. [31]

    S H Chen and B N Brockhous Solid State Commun.2 73 (1964)

    ADS  Google Scholar 

  32. [32]

    S S Pohlong and P N Ram Indian. J. Phys.79 973 (2005)

    Google Scholar 

  33. [33]

    S Y Savrasov and D Y Savrasov Phys. Rev. B54 16487 (1996)

    ADS  Google Scholar 

  34. [34]

    A Debernardi, M Alouani and H Dreysse Phys. Rev. B63 064305 (2001)

    Google Scholar 

  35. [35]

    C B Walker Phys. Rev.103 547 (1956)

    ADS  Google Scholar 

  36. [36]

    G Gilat and G Dolling Phys. Lett.8 304 (1964)

    ADS  Google Scholar 

  37. [37]

    G Gilat and L T Raubenheimer Phys. Rev.144 390 (1966)

    ADS  Google Scholar 

  38. [38]

    J M Wills Phys. Rev. B28 4363 (1983)

  39. [39]

    Y S Touloukian, R K Kirby, R E Taylor and P D Desai Thermophysical Properties of Matter vol. 12: Thermal Expansion-Metallic Elements and Alloys (New York: Plenum, 1975)

  40. [40]

    F Milstein and J Marschall Acta Metall. Mater.40 1229 (1992)

    Google Scholar 

  41. [41]

    M S Daw and R D Hatcher Solid State Commun.56 697 (1985)

    ADS  Google Scholar 

  42. [42]

    W Hu, X Shu and B Zhang Comp. Mater. Sci.23 175 (2002)

    Google Scholar 

  43. [43]

    Z-Y Zeng, C-E Hu, L-C Cai, X-R Chen and F-Q Jing J. Phys. Chem. B114 298 (2010)

    Google Scholar 

  44. [44]

    Z-L Liu, L-C Cai, X-R Chen, Q Wu and F-Q Jing J. Phys. Condens. Matter21 095408 (2009)

    ADS  Google Scholar 

  45. [45]

    J Zarestky, C Stassis, B N Harmon, K-M Ho and C L Fu Phys. Rev. B28 697 (1983)

    Google Scholar 

  46. [46]

    D L Farber, M Krisch, D Antonangeli, A Beraud, J Badro, F Occelli and D Orlikowski Phys. Rev. Lett.96 115502 (2006)

    ADS  Google Scholar 

  47. [47]

    Numerical Data and Functional Relationships in Science and Technology, edited by K-H Hellwege and J L Olsen, Landolt-Börnstein, New Series, Group III, Vol. 13, Pt. a (Springer, Berlin, 1981)

  48. [48]

    A M Guellil and J B Adams J. Mater. Res.7 639 (1992)

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hak-Son Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jong, G., Song, P. & Jin, H. Phonon and thermodynamic properties of bcc transition metals using MEAM potentials. Indian J Phys 94, 753–766 (2020).

Download citation


  • EAM
  • MEAM
  • Bcc transition metal
  • Phonon dispersion relation
  • DOS
  • Thermodynamic property
  • QHA


  • 61.72.jd
  • 71.20.Be
  • 63.20.Dj