Skip to main content
Log in

Sub-micron and nanosized features in laser-induced periodic surface structures

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present report concentrates on little known peculiarities of laser-induced periodic surface structures (LIPSS) on metals and alloys formed upon irradiation by linearly polarized Ti/sapphire femtosecond laser pulses with the energy density of 0.17–1.0 J/cm2 in air environment. The peculiarities discussed are spontaneous twofold reduction in period and appearance of dislocations in the quasi-grating LIPSS. The twofold reduction in period is interpreted as a result of the second harmonic generation (SHG) of the laser light on the surface, stimulated and enhanced by surface roughness. LIPSS with two times shorter period stimulate SHG, and in this way a positive feedback mechanism works. The dislocations in the LIPSS are explained as the interference of scattered wave, which may contain optical vortices, with the incident plane wave. The quasi-grating with the dislocations works as a spatial phase modulator for the scattered wave and provides a positive feedback for enhancement of the dislocations. A successful example of application of LIPSS on noble metals as a SERS substrate and a discussion of their features important for such application is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A Y Vorobyev and C Guo Opt. Express 14 2164 (2006)

    Article  ADS  Google Scholar 

  2. A Borowiec and H K Haugen Appl. Phys. Lett. 82 4462 (2003)

    Article  ADS  Google Scholar 

  3. B Öktem, I Pavlov, S Ilday, H Kalaycioglu, A Rybak, S Yavas, M Erdogan and F Ö Ilday Nat. Photon. 7 897 (2013)

    Article  ADS  Google Scholar 

  4. J Bonse, J Kruger, S Höhm and A Rosenfeld J. Laser Appl. 24 042006-1 (2012)

    Article  ADS  Google Scholar 

  5. E L Gurevich and S V Gurevich Appl. Surf. Sci. 302, 118 (2014)

    Article  ADS  Google Scholar 

  6. O Varlamova, C Martens, M Ratzke and J Reif Appl. Opt. 53, 10 (2014)

    Article  Google Scholar 

  7. A Vorobyev and C Guo Laser Photon. Rev. 7, 385 (2013)

    Article  ADS  Google Scholar 

  8. R Buividas, M Mikutis and S. Juodkazis Prog. Quant. Electron. 38, 119 (2014)

    Article  ADS  Google Scholar 

  9. A Vorobyev and C Guo J. Appl. Phys. 117, 033103 (2015)

    Article  ADS  Google Scholar 

  10. J Bonse, S V Kirner, S Höhm, N Epperlein, D Spaltmann, A Rosenfeld and J Krüger Proc. SPIE 10092, 100920N (2017)

    Google Scholar 

  11. J Bonse, A Rosenfeld and J Krüger J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  12. T J-Y Derrien, T E Itina, R Torres, T Sarnet and M Sentis, J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  13. E D Diebold, N M Mack, S K Doorn and E Mazur Langmuir 25, 1790 (2009)

    Article  Google Scholar 

  14. R Buividas, P R Stoddart and S Juodkazis Ann. Physik (Berlin) 524, L5 (2012)

    Article  ADS  Google Scholar 

  15. Y Han,·X Lan, T Wei, H-L Tsai and H Xiao Appl. Phys. A 97, 72 (2009)

    Article  Google Scholar 

  16. A Wang, L Jiang, X Li, Q Xie, B Li, Z Wang, K Du and Y Lu J. Mater. Chem. B5 777 (2017)

    Article  Google Scholar 

  17. Y Dai, M He, B Lu, X Yan and G Ma Phys. Conf. Ser. 276 012015 (2011)

    Article  Google Scholar 

  18. Y Dai, M He, H Bian, B Lu, X Yan and·G Ma Appl. Phys. A 106 567 (2012)

    Article  ADS  Google Scholar 

  19. C H Lin, L Jiang, Y H Chai, H Xiao, S J Chen and H L Tsai Opt Express. 17 21581 (2009)

    Article  ADS  Google Scholar 

  20. Z Zhou, J Xu, F He, Y Liao, Y Cheng, K Sugioka and K Midorikawa Jpn. J. Appl. Phys. 49 022703 (2010)

    Article  ADS  Google Scholar 

  21. S Hamad, G Krishna Podagatlapalli, Md Ahamad Mohiddon and V Rao Soma Appl. Phys. Lett. 104 263104 (2014)

    Article  ADS  Google Scholar 

  22. S Hamad, G Krishna Podagatlapalli, M A Mohiddon and V Rao Soma. Adv. Mater. Lett. 6 1073 (2015)

    Article  Google Scholar 

  23. A A Ionin, S I Kudryashov, A E Ligachev, S V Makarov, N N Mel’nik, A A Rudenko, L V Seleznev, D V Sinitsyn and R A Khmelnitsky Quantum Electron. 43 304 (2013)

    Article  ADS  Google Scholar 

  24. V G Ivanov, E S Vlakhov, G E Stan, M Zamfirescu, C Albu, N Mihailescu, I Negut, C Luculescu, M Socol, C Ristoscu and I N Mihailescu J. Appl. Phys. 118 203104 (2015)

    Article  ADS  Google Scholar 

  25. H W Chang, Y C Tsai, C W Cheng, C Y Lin, Y W Lin and T M Wu J. Colloid Interface Sci. 360 305 (2011)

    Article  ADS  Google Scholar 

  26. H Messaoudi, S K Das, J Lange, F Heinrich, S Schrader, M Frohme and R Grunwald, Proc. SPIE 8972, 89720H-1 (2014).

    Article  Google Scholar 

  27. S Sakabe, M Hashida, S Tokita, S Namba and K Okamuro Phys. Rev. B 79 033409 (2009)

    Article  ADS  Google Scholar 

  28. M Okamuro, M Hashida, Y Miyasaka, Y Ikuta, S Tokita and S Sakabe Phys. Rev. B 82 165417-1 (2010)

    Article  ADS  Google Scholar 

  29. A Y Vorobyev and C L Guo J. Appl. Phys. 104 063523 (2008)

    Article  ADS  Google Scholar 

  30. A Y Vorobyev, V S Makin and C Guo J. Appl. Phys. 101 034903 (2007)

    Article  ADS  Google Scholar 

  31. S.K. Das, A. Andreev, H. Messaoudi, J. Braenzel, M. Schnuerer and R. Grunwald J. Appl. Phys. 1019 113101 (2016)

    Article  ADS  Google Scholar 

  32. S Hou, Y Huo, P Xiong, Y Zhang, S Zhang, T Jia, Z Sun, J Qiu and Z Xu J. Phys. D 44 505401 (2011)

    Article  ADS  Google Scholar 

  33. J Bonse, M Munz and H Sturm J. Appl. Phys. 97 013538 (2005)

    Article  ADS  Google Scholar 

  34. P Vaity, A Aadhi and R P Singh Appl. Opt. 52 6652 (2013)

    Article  ADS  Google Scholar 

  35. J E Curtis and D G Grier Phys. Rev. Lett. 90 133901 (2003)

    Article  ADS  Google Scholar 

  36. M Padgett, J Courtial and L Allen Physics Today 57 35 (2004)

    Article  ADS  Google Scholar 

  37. N B Baranova, B J Zeldovich, A B Mamaev, N F Pilipetskii and V V Shkunov Soviet JETP Lett. 33 206 (1981)

    Google Scholar 

  38. J P Schmidt, S E Cross and S K Buratto J. Chem. Phys. 121 10657 (2004)

    Article  ADS  Google Scholar 

  39. L Schade, S Franzka, M Biener, J Biener and N Hartmann Appl. Surf. Sci. 374 19 (2016)

    Article  ADS  Google Scholar 

  40. E Rebollar, M Hernández, M Sanz, S Pérez, T A Ezquerra and M Castillejo J. Appl. Polym. Sci. 132 4277 (2015)

    Article  Google Scholar 

  41. P Hildebrandt and M J Stockburger Phys. Chem. 88 5935 (1984)

    Article  Google Scholar 

  42. H Watanabe, N Hayazawa, Y Inouye and S J Kawata Phys. Chem. B 109 5012 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate financial support of NATO Science for Peace and Security (SPS) Programme (Grant NUKR.SFPP 984617) and technical support of Femtosecond Laser Center for Collective Use of NAS of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Berezovska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezovska, N., Dmitruk, I., Vovdenko, S. et al. Sub-micron and nanosized features in laser-induced periodic surface structures. Indian J Phys 93, 495–502 (2019). https://doi.org/10.1007/s12648-018-1323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1323-0

Keywords

PACS Nos.

Navigation