Prediction on elastic and thermal properties of defective L12–Al3Li intermetallics

Original Paper
  • 8 Downloads

Abstract

The effects of Al vacancy, Li vacancy, Al anti-site and Li anti-site point defects on the elastic and thermal properties of L12–Al3Li intermetallic compound were investigated by the first-principle pseudopotential plane-wave calculations. The results show that Li anti-site and Al anti-site can easily form in L12–Al3Li. Li vacancy slightly increases hardness and the Debye temperature, whereas Li anti-site, Al anti-site, and Al vacancy impose the opposite influence. All these point defects have no obvious impact on the brittleness of L12–Al3Li. Under the Debye temperature, the specific heat of L12–Al3Li weakly decreases with the content of Li vacancy, but increases with those of Li anti-site, Li anti-site, Al anti-site, and Al vacancy.

Keywords

Al3Li intermetallics Point defect Elastic constant Thermal property First principles 

PACS Nos.

62.20.Dc 62.30.+d 65.20.+w 65.40.De 

References

  1. [1]
    Z Q Zheng, J F Li, Z G Chen, H Y Li, S C Li and C Y Tan Chin. J. Nonfer. Metal. 21 2337 (2011)Google Scholar
  2. [2]
    V Rajendran, S Muthukumaran, T Jayakumar, P Palanichamy, P Shankar and B Raj J. Alloys Compd. 478 147 (2009)CrossRefGoogle Scholar
  3. [3]
    Z Q Li and S T John Phys. Rev. B 61 14531 (2000)ADSCrossRefGoogle Scholar
  4. [4]
    Z Mao, D N Seidman and C Wolverton Apl. Mater. 1 042103 (2013)ADSCrossRefGoogle Scholar
  5. [5]
    Z Mao, W Chen, D N Seidman and C Wolverton Acta Mater. 59 3012 (2011)CrossRefGoogle Scholar
  6. [6]
    M E Krug, D C Dunand and D Seidman Acta Mater. 59 1700 (2011)CrossRefGoogle Scholar
  7. [7]
    L Y Sun, Z Chen, Y X Wang, J Zhang, H C Miao and H W Zhong Rare. Metal. Mat. Eng. 38 86 (2009)Google Scholar
  8. [8]
    S P Sun, X P Li, Y Yu, Y L Lu, B Zang, D Q Yi and Y Jiang Chin. J. Nonfer. Metal. 23 370 (2013)Google Scholar
  9. [9]
    S P Sun, X P Li, Y L Lu, Y Li, D Y Huang and D Q Yi Rare. Metal. Mat. Eng. 42 1478 (2013)Google Scholar
  10. [10]
    G Kresse and J Furthmuller Phys. Rev. B 54 11169 (1996)ADSCrossRefGoogle Scholar
  11. [11]
    J P Perdew, K M Burke and M Emzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  12. [12]
    G Kresse and J Joubert Phys. Rev. B 59 1758 (1999)ADSCrossRefGoogle Scholar
  13. [13]
    M Sluiter, D de Fontaine, X Q Guo, R Podloucky and A J Freeman Phys. Rev. B 42 10460 (1990)ADSCrossRefGoogle Scholar
  14. [14]
    G P Das, A Aryab and S Banerjee Intermetallics 4 625 (1996)CrossRefGoogle Scholar
  15. [15]
    K Y Chen, L R Zhao and R John J. Phys. D-Appl. Phys. 36 2725 (2003)ADSCrossRefGoogle Scholar
  16. [16]
    W Muller, E Bubeck and V Gerald Aluminium-Lithium Alloys III (London: University of Oxford) (1986)Google Scholar
  17. [17]
    M Born and K Huang Dynamical Theory and Experiment I (Berlin: Springer) (1982)Google Scholar
  18. [18]
    S H Jhi, J Ihm and G S Louie Nature 6726 132 (1999)ADSCrossRefGoogle Scholar
  19. [19]
    S F Pugh Philos. Mag. 45 823 (1954)CrossRefGoogle Scholar
  20. [20]
    D G Pettifor Mater. Sci. Technol 8 345(1992)CrossRefGoogle Scholar
  21. [21]
    K Huang and R Q Han Solid State Physics (Beijing: High Education) (1988)Google Scholar
  22. [22]
    C Kittel Introduction to Solid State Physics (Beijing: Chemical Industry) (2005)MATHGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.College of EngineeringYantai Nanshan UniversityYantaiChina
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  3. 3.Key Lab of Nonferrous Materials of Ministry of EducationCentral South UniversityChangshaChina

Personalised recommendations