Skip to main content
Log in

Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier’s law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H Miura and I I Glass Proc. R. Soc. A 397 295 (1985)

    Article  ADS  Google Scholar 

  2. S I Pai, S Menon and Z Q Fan, Int. J. Eng. Sci. 18(12) 1365 (1980)

    Article  Google Scholar 

  3. F Higashino and T Suzuki Z. Naturforsch 35A 1330 (1980)

    ADS  Google Scholar 

  4. H Steiner and T Hirschler Eur. J. Mech. B Fluids 21 371 (2002)

    Article  MathSciNet  Google Scholar 

  5. R E Marshak Phys. Fluids 1(1) 24 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  6. L A Elliott Proc. R. Soc. A 258 287 (1960)

    Article  ADS  Google Scholar 

  7. K C Wang J. Fluid Mech. 20(3) 447 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. P Carrus, P Fox, F Hass and Z Kopal Astrophys. J. 113 496 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  9. M H Rogers Astrophys. J. 125 478 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  10. A Patel J. Nat. Acad. Math. India 27 83 (2013)

    Google Scholar 

  11. L I Sedov Similarity and Dimensional Methods in Mechanics (New York: Academic Press) (1959)

    MATH  Google Scholar 

  12. M P Ranga Rao and B V Ramana J. Math. Phys. Sci. 10 465 (1976)

    Google Scholar 

  13. V K Singh and G K Srivastava Astrophys. Space Sci. 155 215 (1988)

    Article  ADS  Google Scholar 

  14. J P Vishwakarma and G Nath Phys. Scr. 74 493 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. J P Vishwakarma and G Nath Meccanica 42 331 (2007)

    Article  MathSciNet  Google Scholar 

  16. G Nath Meccanica 50(7) 1701 (2015)

    Article  MathSciNet  Google Scholar 

  17. G Nath and P K Sahu Springerplus 5 1509 (2016)

    Article  Google Scholar 

  18. G Nath Indian J. Phys. 90(9) 1055 (2016)

    Article  ADS  Google Scholar 

  19. G Nath and P K Sahu Int. J. Appl. Comput. Math. 3(4) 2785 (2017)

    Article  Google Scholar 

  20. G Nath and S Singh Int. J. Non Linear Mech. 88 102 (2017)

    Article  ADS  Google Scholar 

  21. A F Ghoniem, M M Kamel, S A Berger and A K Oppenheim J. Fluid Mech. 117 473 (1982)

    Article  ADS  Google Scholar 

  22. P Chaturani Appl. Sci. Res. 23 197 (1970)

    Article  Google Scholar 

  23. V A Levin and G A Skopina J. Appl. Mech. Tech. Phys. 45 457 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. G Nath Res. Astron. Astrophys. 10 445 (2010)

    Article  ADS  Google Scholar 

  25. J P Vishwakarma and G Nath Phys. Scr. 81(4) 045401 (2010)

  26. J P Vishwakarma and G Nath Meccanica 44 239 (2009)

    Article  Google Scholar 

  27. D D Laumbach and R F Probstein J. Fluid Mech. 40 833 (1970)

    Article  ADS  Google Scholar 

  28. G C Pomraning The Equations of Radiation Hydrodynamics (Oxford: Pergaman Press) (1973)

    Google Scholar 

  29. P R Babu, J A Rao and S Sheri J. Appl. Fluid Mech. 7(4) 641 (2014)

    Google Scholar 

  30. S Mukhopadhyay J. Appl. Fluid Mech. 2(2) 29 (2009)

    Google Scholar 

  31. J P Vishwakarma, G Nath and K K Singh Phys. Scr. 78(3) 035402 (2008)

  32. J P Vishwakarma and G Nath MMC_B 77 67 (2008)

    Google Scholar 

  33. P Rosenau and S Frankenthal Astrophys. J. 208 633 (1976)

    Article  ADS  Google Scholar 

  34. J P Vishwakarma, V Chaube and A Patel Int. J. Appl. Mech. Eng. 12 813 (2007)

    Google Scholar 

  35. Y A B Zel’dovich and Y U P Raizer Physics of Shock Waves and High Temperature Hydrodynamic Phenomena Vol. II (New York: Academic Press) (1967)

    Google Scholar 

  36. R Bajargaan and A Patel J. Appl. Fluid Mech. 10(1) 329 (2017)

    Article  Google Scholar 

  37. J B Singh Astrophys. Space Sci. 88 269 (1982)

    Article  ADS  Google Scholar 

  38. P Rosenau Phys. Fluids 20(7) 1097 (1977)

    Article  ADS  Google Scholar 

  39. J P Vishwakarma and G Nath Commun. Nonlinear Sci. Numer. Simul. 17 154 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  40. R A Freeman and J Craggs Br. J. Appl. Phys. 2 421 (1969)

    Google Scholar 

  41. E A Moelwyn-Hughes Physical Chemistry (London: Pergamon Press) (1961)

    Google Scholar 

Download references

Acknowledgements

The research of the author (Ruchi Bajargaan) is supported by CSIR, New Delhi, India vide letter No. 09/045(1264)/2012-EMR-I. The second author (Arvind Patel) thanks to the University of Delhi, Delhi, India for the R&D grant vide letter No. RC/2015/9677 dated October 15, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajargaan, R., Patel, A. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux. Indian J Phys 92, 1119–1135 (2018). https://doi.org/10.1007/s12648-018-1199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1199-z

Keywords

PACS Nos.

Navigation