Indian Journal of Physics

, Volume 92, Issue 9, pp 1119–1135 | Cite as

Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

  • Ruchi Bajargaan
  • Arvind Patel
Original paper


One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier’s law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.


Exponential shock wave Self similar solution Dusty gas Self gravitation Conduction and radiation heat flux 


47.40.-X 47.55.Kf 47.70.Mc 47.32.Ef 



The research of the author (Ruchi Bajargaan) is supported by CSIR, New Delhi, India vide letter No. 09/045(1264)/2012-EMR-I. The second author (Arvind Patel) thanks to the University of Delhi, Delhi, India for the R&D grant vide letter No. RC/2015/9677 dated October 15, 2015.


  1. [1]
    H Miura and I I Glass Proc. R. Soc. A 397 295 (1985)ADSCrossRefGoogle Scholar
  2. [2]
    S I Pai, S Menon and Z Q Fan, Int. J. Eng. Sci. 18(12) 1365 (1980)CrossRefGoogle Scholar
  3. [3]
    F Higashino and T Suzuki Z. Naturforsch 35A 1330 (1980)ADSGoogle Scholar
  4. [4]
    H Steiner and T Hirschler Eur. J. Mech. B Fluids 21 371 (2002)MathSciNetCrossRefGoogle Scholar
  5. [5]
    R E Marshak Phys. Fluids 1(1) 24 (1958)ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L A Elliott Proc. R. Soc. A 258 287 (1960)ADSCrossRefGoogle Scholar
  7. [7]
    K C Wang J. Fluid Mech. 20(3) 447 (1964)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P Carrus, P Fox, F Hass and Z Kopal Astrophys. J. 113 496 (1951)ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M H Rogers Astrophys. J. 125 478 (1957)ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A Patel J. Nat. Acad. Math. India 27 83 (2013)Google Scholar
  11. [11]
    L I Sedov Similarity and Dimensional Methods in Mechanics (New York: Academic Press) (1959)zbMATHGoogle Scholar
  12. [12]
    M P Ranga Rao and B V Ramana J. Math. Phys. Sci. 10 465 (1976)Google Scholar
  13. [13]
    V K Singh and G K Srivastava Astrophys. Space Sci. 155 215 (1988)ADSCrossRefGoogle Scholar
  14. [14]
    J P Vishwakarma and G Nath Phys. Scr. 74 493 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J P Vishwakarma and G Nath Meccanica 42 331 (2007)MathSciNetCrossRefGoogle Scholar
  16. [16]
    G Nath Meccanica 50(7) 1701 (2015)MathSciNetCrossRefGoogle Scholar
  17. [17]
    G Nath and P K Sahu Springerplus 5 1509 (2016)CrossRefGoogle Scholar
  18. [18]
    G Nath Indian J. Phys. 90(9) 1055 (2016)ADSCrossRefGoogle Scholar
  19. [19]
    G Nath and P K Sahu Int. J. Appl. Comput. Math. 3(4) 2785 (2017)CrossRefGoogle Scholar
  20. [20]
    G Nath and S Singh Int. J. Non Linear Mech. 88 102 (2017)ADSCrossRefGoogle Scholar
  21. [21]
    A F Ghoniem, M M Kamel, S A Berger and A K Oppenheim J. Fluid Mech. 117 473 (1982)ADSCrossRefGoogle Scholar
  22. [22]
    P Chaturani Appl. Sci. Res. 23 197 (1970)CrossRefGoogle Scholar
  23. [23]
    V A Levin and G A Skopina J. Appl. Mech. Tech. Phys. 45 457 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    G Nath Res. Astron. Astrophys. 10 445 (2010)ADSCrossRefGoogle Scholar
  25. [25]
    J P Vishwakarma and G Nath Phys. Scr. 81(4) 045401 (2010)Google Scholar
  26. [26]
    J P Vishwakarma and G Nath Meccanica 44 239 (2009)CrossRefGoogle Scholar
  27. [27]
    D D Laumbach and R F Probstein J. Fluid Mech. 40 833 (1970)ADSCrossRefGoogle Scholar
  28. [28]
    G C Pomraning The Equations of Radiation Hydrodynamics (Oxford: Pergaman Press) (1973)Google Scholar
  29. [29]
    P R Babu, J A Rao and S Sheri J. Appl. Fluid Mech. 7(4) 641 (2014)Google Scholar
  30. [30]
    S Mukhopadhyay J. Appl. Fluid Mech. 2(2) 29 (2009)Google Scholar
  31. [31]
    J P Vishwakarma, G Nath and K K Singh Phys. Scr. 78(3) 035402 (2008)Google Scholar
  32. [32]
    J P Vishwakarma and G Nath MMC_B 77 67 (2008)Google Scholar
  33. [33]
    P Rosenau and S Frankenthal Astrophys. J. 208 633 (1976)ADSCrossRefGoogle Scholar
  34. [34]
    J P Vishwakarma, V Chaube and A Patel Int. J. Appl. Mech. Eng. 12 813 (2007)Google Scholar
  35. [35]
    Y A B Zel’dovich and Y U P Raizer Physics of Shock Waves and High Temperature Hydrodynamic Phenomena Vol. II (New York: Academic Press) (1967)Google Scholar
  36. [36]
    R Bajargaan and A Patel J. Appl. Fluid Mech. 10(1) 329 (2017)CrossRefGoogle Scholar
  37. [37]
    J B Singh Astrophys. Space Sci. 88 269 (1982)ADSCrossRefGoogle Scholar
  38. [38]
    P Rosenau Phys. Fluids 20(7) 1097 (1977)ADSCrossRefGoogle Scholar
  39. [39]
    J P Vishwakarma and G Nath Commun. Nonlinear Sci. Numer. Simul. 17 154 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R A Freeman and J Craggs Br. J. Appl. Phys. 2 421 (1969)Google Scholar
  41. [41]
    E A Moelwyn-Hughes Physical Chemistry (London: Pergamon Press) (1961)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelhiDelhiIndia

Personalised recommendations