Advertisement

Indian Journal of Physics

, Volume 92, Issue 8, pp 979–984 | Cite as

Study of non-extensive entropy of bound polaron in monolayer graphene

  • R. Khordad
  • H. R. Rastegar Sedehi
Original Paper

Abstract

An electron is coupled to the longitudinal acoustic phonon on the surface of the graphene with Coulomb impurity has been considered. The ground state energy of the polaron has been obtained using the variational method. Tsallis entropy variations have been studied with magnetic field, temperature, Coulomb bound parameter and the charge for different substances such as SiC, HfO2, h-BN, and SiO2. It is found that the entropy increases with enhancing temperature and Coulomb bound parameter. But, it decreases with enhancing the charge. The entropy increases with decreasing the non-extensive parameter q for all substances at constant Coulomb bound parameter.

Keywords

Graphene Entropy Bound polaron 

PACS Nos.

65.40.gd 71.38.-k 68.65.Hb 

References

  1. [1]
    A A Shokri and E K Safari Indian J. Phys. 89 23 (2015)ADSCrossRefGoogle Scholar
  2. [2]
    S Acharya and R Sharma Indian J. Phys. 90 543 (2016)ADSCrossRefGoogle Scholar
  3. [3]
    M Wang et al Int. J. Smart Nano Mater. 5 123 (2014)CrossRefGoogle Scholar
  4. [4]
    A A Baladin et al ECS Trans. 28 63 (2010)CrossRefGoogle Scholar
  5. [5]
    A A Balandin et al Nano Lett. 8 902 (2008)ADSCrossRefGoogle Scholar
  6. [6]
    S Mitra et al Indian. J. Phys. 90 1091 (2016)CrossRefGoogle Scholar
  7. [7]
    C R Dean et al Nature Phys. 7 693 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    A F L de Souaz et al J. Phys. Chem. C 120 27707 (2016)CrossRefGoogle Scholar
  9. [9]
    S Gadipelli and Z X Guo Prog. Mater. Sci. 69 1 (2015)CrossRefGoogle Scholar
  10. [10]
    A Marini, J D Cox and F J G de Abajo Phys. Rev. B 95 125408 (2017)ADSCrossRefGoogle Scholar
  11. [11]
    B Sadhukhan, A Nayak and A Mookerjee Indian J. Phys. (2017)  https://doi.org/10.1007/s12648-017-1067-2 Google Scholar
  12. [12]
    Z Cui and J C Guo AIP Adv. 6 125110 (2016)ADSCrossRefGoogle Scholar
  13. [13]
    Y C Lee et al Chin. J. Phys. 55 1235 (2017)CrossRefGoogle Scholar
  14. [14]
    M H Mohammed, F N Ajeel and A M Khudhair Chin. J. Phys. 55 1567 (2017)Google Scholar
  15. [15]
    M Bordag and I G Pirozhenko Int. J. Mod. Phys. B 30 1650120 (2016)ADSCrossRefGoogle Scholar
  16. [16]
    Y Yuan X Guo L An and W Xu Int. J. Mod. Phys. B 31 1750045 (2017)ADSCrossRefGoogle Scholar
  17. [17]
    C L Kane and E J Mele Phys. Rev. Lett. 95 146802 (2005)ADSCrossRefGoogle Scholar
  18. [18]
    C Kane and E Mele Phys. Rev. Lett. 95 226801 (2005)ADSCrossRefGoogle Scholar
  19. [19]
    G Lee and K Cho Phys. Rev. B 79 165440 (2009)ADSCrossRefGoogle Scholar
  20. [20]
    V M Pereira, J Nilsson and A H C Neto Phys. Rev. Lett. 99 166802 (2007)ADSCrossRefGoogle Scholar
  21. [21]
    Z W Wang, L Liu and Z Q Li Appl. Phys. Lett. 106 101601 (2015)ADSCrossRefGoogle Scholar
  22. [22]
    Z H Ding, Y Zhao and J L Xiao Superlattices Microstruct. 97 298 (2016)ADSCrossRefGoogle Scholar
  23. [23]
    B Kandemir and A Mogulkoc Solid State Commun. 177 80 (2014)ADSCrossRefGoogle Scholar
  24. [24]
    B Kandemir J. Phys. Condens. Matter 25 025302 (2013)ADSCrossRefGoogle Scholar
  25. [25]
    A Mogulkoc, M Modarresi and B S Kandemir Eur. Phys. J. B 88 1 (2015)CrossRefGoogle Scholar
  26. [26]
    A Mogulkoc et al Physica B 446 85 (2014)ADSCrossRefGoogle Scholar
  27. [27]
    M Modarresi et al Physica E 66 303 (2015)ADSCrossRefGoogle Scholar
  28. [28]
    J J Hopfeld and A V M Herz Proc. Natl. Acad. Sci. USA 92 6655 (1995)ADSCrossRefGoogle Scholar
  29. [29]
    R Khordad and H R Rastegar Sedehi Indian J. Phys. 91 825 (2017)ADSCrossRefGoogle Scholar
  30. [30]
    C E Shannon Bell Syst. Tech. J. 27 379 (1948)CrossRefGoogle Scholar
  31. [31]
    A Renyi Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability 547 (1961)Google Scholar
  32. [32]
    C Tsallis J. Stat. Phys. 52 479 (1988)ADSCrossRefGoogle Scholar
  33. [33]
    J L Xiao Superlattices Microstruct. 90 308 (2016)ADSCrossRefGoogle Scholar
  34. [34]
    Y Sun, Z H Ding and J L Xiao J. Low Temp. Phys. 177 151 (2014)ADSCrossRefGoogle Scholar
  35. [35]
    R Khordad Contin. Mech. Thermodyn. 28 947 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Y J Chen and J L Xiao J. Low Temp. Phys. 170 60 (2013)ADSCrossRefGoogle Scholar
  37. [37]
    Y J Chen and J L Xiao J. Low Temp. Phys. 86 241 (2017)ADSCrossRefGoogle Scholar
  38. [38]
    T D Lee, F E Low and D pines Phys. Rev. 90 297 (1953)ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    C Tsallis, R S Mendes and A R Plastino Physica A 261 534 (1998)ADSCrossRefGoogle Scholar
  40. [40]
    D C Elias et al Science 323 610 (2009)ADSCrossRefGoogle Scholar
  41. [41]
    S Y Zhou et al Nat. Mater. 6 770 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesYasouj UniversityYasoujIran
  2. 2.Department of PhysicsJahrom UniversityJahromIran

Personalised recommendations