Indian Journal of Physics

, Volume 92, Issue 8, pp 1075–1081 | Cite as

Anisotropic Bianchi-V dark energy model under the new perspective of accelerated expansion of the universe in Brans–Dicke theory of gravitation

  • Rekha Jaiswal
  • Rashid Zia
Original Paper


In this paper, we have proposed a cosmological model, which is consistent with the new findings of ‘The Supernova Cosmology project’ headed by Saul Perlmutter, and the ‘High-Z Supernova Search team’, headed by Brian Schimdt. According to these new findings, the universe is undergoing an expansion with an increasing rate, in contrast to the earlier belief that the rate of expansion is constant or the expansion is slowing down. We have considered spatially homogeneous and anisotropic Bianchi-V dark energy model in Brans–Dicke theory of gravitation. We have taken the scale factor \(a(t)=k t^\alpha e^{\beta t}\), which results into variable deceleration parameter (DP). The graph of DP shows a transition from positive to negative, which shows that universe has passed through the past decelerated expansion to the current accelerated expansion phase. In this context, we have also calculated and plotted various parameters and observed that these are in good agreement with physical and kinematic properties of the universe and are also consistent with recent observations.


Bianchi type-V universe Dark energy Brans–Dicke theory 




  1. [1]
    P M Garnavich, et al. Astrophys. J. 493 53 (1998)ADSCrossRefGoogle Scholar
  2. [2]
    P M Garnavich, et al. Astrophys. J. 509 74 (1998)ADSCrossRefGoogle Scholar
  3. [3]
    S Perlmutter, et al. Astrophys. J. 483 565 (1997)ADSCrossRefGoogle Scholar
  4. [4]
    S Perlmutter, et al. Nature 391 51 (1998)ADSCrossRefGoogle Scholar
  5. [5]
    S Perlmutter, et al. Astrophys. J. 517 565 (1999)ADSCrossRefGoogle Scholar
  6. [6]
    A G Riess, et al. Astron. J. 116 1009 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    B P Schmidt, et al. Astrophys. J. 507 46 (1998)ADSCrossRefGoogle Scholar
  8. [8]
    C L Bennett, et al. Astrophys. J. Suppl. Ser. 148 1 (2003)ADSCrossRefGoogle Scholar
  9. [9]
    C H Brans, R H Dicke Phys. Rev. A 124 925 (1961)ADSCrossRefGoogle Scholar
  10. [10]
    A Pradhan, A K Singh, D S Chauhan . Int. J. Theor. Phys. 52 266 (2013)CrossRefGoogle Scholar
  11. [11]
    D R K Reddy Astrophys. Space Sci. 286 365 (2003)ADSCrossRefGoogle Scholar
  12. [12]
    D R K Reddy Astrophys. Space Sci. 286 359 (2003)ADSCrossRefGoogle Scholar
  13. [13]
    R Bali, A Pradhan Chin. Phys. Lett. 24 585 (2007)CrossRefGoogle Scholar
  14. [14]
    R Bali, R D Upadhaya Astrophys. Space Sci. 283 97 (2003)ADSCrossRefGoogle Scholar
  15. [15]
    R Venkateswarlu, J Satish Journal of Gravity 2014 909374 (2014)CrossRefGoogle Scholar
  16. [16]
    V U M Rao, G K Sreedevi, D Neelima Astrophys. Space Sci. 357 76 (2015)ADSCrossRefGoogle Scholar
  17. [17]
    V U M Rao, V J Sudha Astrophys. Space. Sci. 337 499 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    D C Maurya, R Zia, A Pradhan . J. Exp. Theor. Phys. 150 716 (2016)Google Scholar
  19. [19]
    R K Knop, et al. Astrophys. J. 598 102 (2003)ADSCrossRefGoogle Scholar
  20. [20]
    M Tegmark, et al. (SDSS Collaboration) Phys. Rev. D 69 103501 (2004)Google Scholar
  21. [21]
    G Hinshaw, et al. (WMAP Collaboration) Astrophys. J. Suppl. Ser. 180 225 (2009)Google Scholar
  22. [22]
    N Komatsu, et al. Astrophys. J. Suppl. Ser. 180 330 (2009)ADSCrossRefGoogle Scholar
  23. [23]
    R R Caldwell, Phys. Lett.B 545 23 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia

Personalised recommendations