Advertisement

Indian Journal of Physics

, Volume 92, Issue 7, pp 875–881 | Cite as

Dielectric and ac ionic conductivity investigation of Li2SrP2O7

  • O. Ajili
  • B. Louati
  • K. Guidara
Original Paper

Abstract

The pyrophosphate Li2SrP2O7 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction, IR, Raman and electrical impedance spectroscopy. Detailed electrical properties of the compound were analyzed as a function of frequency (209 Hz–1 MHz) and temperature (519–628) K. Impedance analysis exhibits the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of these contribution obey the Arrhenius law with activation energies (1.03 ± 0.05) and (1.25 ± 0.05) eV, respectively. The ac conductivity for grain contribution was interpreted using the universal Jonscher’s power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism. The correlated barrier hopping model was found to be the best model describing the conduction mechanism.

Keywords

AC conductivity CBH model Li2SrP2O7 

PACS No.

07.50.-e 52.25.Mq 61.66.Fn 78.20.Bh 

Notes

Acknowledgments

This work is financially supported by the Ministry of Higher Education and Scientific Research of Tunisia.

References

  1. [1]
    N Dridi, A Boukhari, J M Réau, E Arbib and E M Holt. Mater. Lett. 47 212 (2001).CrossRefGoogle Scholar
  2. [2]
    V Vincent, G Nihoul and J R Gavarri Solid State Ion. 92 11(1996).CrossRefGoogle Scholar
  3. [3]
    H Fukuoka, H Matsunaga and S Yamanaka Mater. Res. Bull. 38 991(2003)CrossRefGoogle Scholar
  4. [4]
    A El Maadi, J Bennazha, J M Réau, A Boukhari and E M Holt. Mater. Res. Bull. 38 865(2003).CrossRefGoogle Scholar
  5. [5]
    N El Khayati et al. Solid State Soc. 4, 1273 (2002).ADSCrossRefGoogle Scholar
  6. [6]
    J Chen, W Pang and R Xu Top. Catal. 9 93(1999).CrossRefGoogle Scholar
  7. [7]
    Y Zhang, Y Liu, S Fu, F Guo and Y Qian. Bull. Chem. Soc. Jpn 79 270 (2006)CrossRefGoogle Scholar
  8. [8]
    V K Trunov and Y V Oboznenko. Neorg. Mater. 27 1993 (1995)Google Scholar
  9. [9]
    N Dridi, A Boukhari, J M Réau, E Arbib and E M Holt Solid State Ion. 127 141 (2000)CrossRefGoogle Scholar
  10. [10]
    S R S Prabaharan, M S Michael, S Radhakrishna and C Julien. J. Mater. Chem. 71 791(1997).Google Scholar
  11. [11]
    H Kim, et al. Adv. Funct. Mater 23 1147 (2013).CrossRefGoogle Scholar
  12. [12]
    B K H Gmati, I Khattech and M Jemal J. Chem. Thermodyn. 63 11 (2013)CrossRefGoogle Scholar
  13. [13]
    C Leon, M L Lucia and J Santamaria. Phys. Rev. B 54 11 (1996)CrossRefGoogle Scholar
  14. [14]
    O Ajili, B Louati and K Guidara. Appl. Phys A. 19 119 (2015)Google Scholar
  15. [15]
    J Rodriguez-Carvajal Physica B 192 55 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    T Roisnel and J Rodriguez-Carvajal Mater. Sci. Forum 118 378 (2001).Google Scholar
  17. [17]
    M Harcharras, A Ennacri, H Assaoudi. Anlyt. Sci. Spectrosc. 46 84 (2001)Google Scholar
  18. [18]
    S Chouaib, A Ben-Rhaeim and K Guidara. Bull. Mater. Sci. 34 915 (2011)CrossRefGoogle Scholar
  19. [19]
    S Kaoua et al Solid State Chem. 198 379 (2013).ADSCrossRefGoogle Scholar
  20. [20]
    U Intatha, S Eitssayeam, J Wang and T Tunkasiri. Curr. Appl. Phys. 10 21 (2010)ADSCrossRefGoogle Scholar
  21. [21]
    A Shukla and R N P Choudhary. Curr. App. Phys. 11 414 (2011).ADSCrossRefGoogle Scholar
  22. [22]
    M Haibado, B Louati, F Hlel and K Guidara. J. Alloys Compd. 509 6083 (2011)CrossRefGoogle Scholar
  23. [23]
    B Louati and K Guidara Ionics 17 633 (2011).CrossRefGoogle Scholar
  24. [24]
    R Ben Said, B Louati, K Guidara and S Kamoun. Ionics 20 1071 (2013)CrossRefGoogle Scholar
  25. [25]
    A K Jonscher Nature 267 673 (1977).ADSCrossRefGoogle Scholar
  26. [26]
    D P Almond and A R West Nature (Lond) 306 456 (1983).ADSCrossRefGoogle Scholar
  27. [27]
    T B Schroder and J C Dyre Phys. Rev. Lett. 84 310 (2000).ADSCrossRefGoogle Scholar
  28. [28]
    S R Elliot Solid State Ion. 27 70 (1994).Google Scholar
  29. [29]
    B Roling, A Happe, K Funke and M D Ingram. Phys. Rev. Lett. 78 2160 (1997)ADSCrossRefGoogle Scholar
  30. [30]
    A Ghosh and A Pan Phys. Rev. Lett. 84 2188 (2000).ADSCrossRefGoogle Scholar
  31. [31]
    R H Chen, R Y Chang and S C Shern. J. Phys. Chem. Solids 63 2069 (2002)ADSCrossRefGoogle Scholar
  32. [32]
    A Ghosh Phys. Rev. B 41 1479 (1990).ADSCrossRefGoogle Scholar
  33. [33]
    M Pollak Philos. Mag. 23 519 (1971).ADSCrossRefGoogle Scholar
  34. [34]
    M F Kotkata, F A Abdel-Wahab and H M Maksoud Appl. Phys. 39 2059 (2006)Google Scholar
  35. [35]
    S R Elliot Philos. Mag. 36 1291 (1977).ADSCrossRefGoogle Scholar
  36. [36]
    S R Elliot Philos. Mag. B 37 553 (1978).ADSCrossRefGoogle Scholar
  37. [37]
    B Bukem, S Yani and A Gulen Non-Cryst. Solids 351 2153 (2005)ADSCrossRefGoogle Scholar
  38. [38]
    G N Zolanvaria, S K Tripathi. Pramana. J. Phys. 63 617 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Faculty of Sciences, Laboratory of Spectroscopic Characterization and Optic MaterialsUniversity of SfaxSfaxTunisia

Personalised recommendations