Advertisement

Indian Journal of Physics

, Volume 92, Issue 7, pp 865–874 | Cite as

Investigations of optical and thermoelectric response of direct band gap Ca3XO (X = Si, Ge) anti-perovskites stabilized in cubic and orthorhombic phases

  • Q. Mahmood
  • A. Ashraf
  • M. Hassan
Original Paper
  • 68 Downloads

Abstract

We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.

Keywords

Anti-perovskites Thermoelectric properties Seebeck coefficient Optical properties MBJ functional 

PACS Nos.

63.20.dk 78.20.Mg 72.20.Pa 71.15.Rf 71.15.Mb 73.61.-r 

Notes

Acknowledgements

One of the authors, Mahmood-ul-Hassan (M. Hassan) is thankful to University of the Punjab, Lahore for financial support through Faculty Research Grant Program for the year 2017-2018.

References

  1. [1]
    M Matsuoka, M Kitano, M Takeuchi, K Tsujimaru, M Anpo and J M Thomas Catal Today 122 51 (2007)CrossRefGoogle Scholar
  2. [2]
    T Schiestel, M Kilgus, S Peter, K J Caspary, H Wang and J Caro J. Membr. Sci. 258 1 (2005)CrossRefGoogle Scholar
  3. [3]
    E A Giess et al. J. Res. Dev. 34 916 (1990)Google Scholar
  4. [4]
    A K Chilvery et al. J. Photonics Energy 5 057402 (2015)ADSCrossRefGoogle Scholar
  5. [5]
    I Levin, J Y Chan, R G Geyer, J E Maslar and T A Vanderah, J. Solid State Chem. 156 122 (2001)ADSCrossRefGoogle Scholar
  6. [6]
    G Burns and B A Scott J. Watson Res Center 7 3088 (1973)Google Scholar
  7. [7]
    G H Jonker and J H V Santen Physica 3 337 (1950)ADSCrossRefGoogle Scholar
  8. [8]
    M McCormack, S Jin, T H Tiefel, R M Fleming and J M Phillips Appl. Phys. Lett. 64 3045 (1994)ADSCrossRefGoogle Scholar
  9. [9]
    B Raveau, A Maignan, C Martin and M Hervieu J. Chem. Mater. 10 2641 (1998)CrossRefGoogle Scholar
  10. [10]
    T Okuda, K Nakanishi, S. Miyasaka and Y Tokura Phys. Rev. B 63 113104 (2001)ADSCrossRefGoogle Scholar
  11. [11]
    G Murtaza et al. Opt. Mater. 33 553 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    J M Ball, M M Lee, A Hey and H J Snaith Energy Environ. Sci. 6 1739 (2013)CrossRefGoogle Scholar
  13. [13]
    M Liu, M B Johnston1 and H J Snaith Nature 501 395 (2013)ADSCrossRefGoogle Scholar
  14. [14]
    [T H Hsieh, J Liu and L Fu Phys. Rev. B 90 081112 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    S Kacimi, D Mekam, M Djermouni, M Azzouz, A Hallouche and A Zaoui Mater. Sci. Semicond. Process. 16 1971 (2013)CrossRefGoogle Scholar
  16. [16]
    K Kamishima, T Goto, H Nakagawa, N Miura, M Ohashi and N Mori Phys. Rev, B 63 024426 (2000)ADSGoogle Scholar
  17. [17]
    M H Yu, L H Lewis and A R Moodenbaugh J. Appl. Phys. 93 10128 (2003)ADSGoogle Scholar
  18. [18]
    T Hamada and K Takenaka J. Appl. Phys. 109 07E309 (2013)CrossRefGoogle Scholar
  19. [19]
    K Takenaka and H Takagi Appl. Phys. Lett. 87 261902 (2005)ADSCrossRefGoogle Scholar
  20. [20]
    S V Ovsyannikov and V V Shchennikov Chem. Mater. 22 635 (2010)CrossRefGoogle Scholar
  21. [21]
    K Takenaka, K Asano, M Misawa and H Takagi Appl. Phys. Lett. 92 011927 (2008)ADSCrossRefGoogle Scholar
  22. [22]
    E O Chi, W S Kim and N H Hur Solid State Commun. 120 307 (2001)ADSCrossRefGoogle Scholar
  23. [23]
    X Song et al. Adv. Mater. 23 4690 (2011)CrossRefGoogle Scholar
  24. [24]
    T Shimizu, T Shibayama, K Asano and K Takenaka J. Appl. Phys. 111 07A903 (2012)Google Scholar
  25. [25]
    K Asano, K Koyama and K Takenaka Appl. Phys. Lett. 92 161909 (2008)ADSCrossRefGoogle Scholar
  26. [26]
    M Bilal, S J Asadabadi, R Ahmad and I Ahmad J. Chem. 2015 495131 (2015)Google Scholar
  27. [27]
    H Tashiro, R Suzuki, T Miyawaki, K Ueda and H Asano J. Korean Phys. Soc. 63 299 (2013)ADSCrossRefGoogle Scholar
  28. [28]
    K Haddadi, A Bouhemadou, L Louail and S Bin-Omran Solid State Commun. 150 1995 (2010)ADSCrossRefGoogle Scholar
  29. [29]
    J Nuss, C Muhle, K Hayama, V Abdolazimi and H Takagia Acta. Cryst. B 71 300 (2015)CrossRefGoogle Scholar
  30. [30]
    D D Koelling and B N Harmon J. Phys. C 10 3107 (1977)ADSCrossRefGoogle Scholar
  31. [31]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001; K Schwarz, P Blaha and G K H Madsen Comp. Phys. Commun. 147 71 (2002)ADSCrossRefGoogle Scholar
  32. [32]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  33. [33]
    F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)ADSCrossRefGoogle Scholar
  34. [34]
    J P Perdew and Y Wang Phys. Rev. B 45 13244 (1992)ADSCrossRefGoogle Scholar
  35. [35]
    Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)ADSCrossRefGoogle Scholar
  36. [36]
    M A Khan, A Kashyap, A K Solanki, T Nautiyal and S Auluck Phys. Rev. B 23 1697 (1993)Google Scholar
  37. [37]
    F Wooten Optical Properties of Solids (New York: Academic Press) (1972)Google Scholar
  38. [38]
    L Zhang and D J Singh Phys. Rev. B 80 075117 (2009)ADSCrossRefGoogle Scholar
  39. [39]
    J Sun and D J Singh APL Mater. 4 104803 (2016)ADSCrossRefGoogle Scholar
  40. [40]
    A. H. Reshak, Phys. Chem. Chem. Phys. 16 10558 (2014)CrossRefGoogle Scholar
  41. [41]
    G E Davydyuk, O Y Khyzhun, A H Reshak, H Kamarudin, G L Myronchuk, S P Danylchuk, A O Fedorchuk, L V Piskach, M Y Mozolyuk and O V Parasyuk, Phys. Chem. Chem. Phys. 15 6965 (2013)CrossRefGoogle Scholar
  42. [42]
    A H Reshak, Y M Kogut, A O Fedorchuk, O V Zamuruyeva, G L Myronchuk, O V Parasyuk, H Kamarudin, S Auluck, K J Plucinski and J Bila, Phys. Chem. Chem. Phys. 15 18979 (2013)CrossRefGoogle Scholar
  43. [43]
    A H Reshak, D Stys, S Auluck and I V Kityk Phys. Chem. Chem. Phys. 13 2945 (2011)CrossRefGoogle Scholar
  44. [44]
    A H Reshak RSC Adv. 4 39565 (2014)CrossRefGoogle Scholar
  45. [45]
    A H Reshak Sci. Rep. 7 46415 (2017)ADSCrossRefGoogle Scholar
  46. [46]
    F D Murnaghan Proc. Natl. Acad. Sci. 30 244 (1944)ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    G Marius Kramers–kronig Relations (The Physics of Semiconductors), (Berlin: Springer) 775 (2010)Google Scholar
  48. [48]
    D Penn Phys. Rev. 128 2093 (1962)ADSCrossRefGoogle Scholar
  49. [49]
    W Benstaalia, S Bentata, A Abbad and A Belaidi Mater. Sci. Semicond. Process. 16 231 (2013)CrossRefGoogle Scholar
  50. [50]
    W Benstaalia, S Bentata, H A Bentounes, A Abbad and B Bouadjemi Mater. Sci. Semicond. Process. 17 53 (2014)CrossRefGoogle Scholar
  51. [51]
    R Khenata et al. Solid State Commun. 136 120 (2005)ADSCrossRefGoogle Scholar
  52. [52]
    B Amin, I Ahmad, M Maqbool, S Goumri Said and R Ahmad J. Appl. Phys. 109 023109 (2011)ADSCrossRefGoogle Scholar
  53. [53]
    B Amin, N Singh, T M Tritt, H N Alshareef and U Schwingenschlogl Appl. Phys. Lett. 103 031907 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Institute of Physics, Centre for Advanced Studies in Physics (CASP)Government College (GC) UniversityLahorePakistan
  2. 2.Materials Growth and Simulation Laboratory, Department of PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations