Indian Journal of Physics

, Volume 92, Issue 7, pp 911–917 | Cite as

Periodic multilayer magnetized cold plasma containing a doped semiconductor

  • Chittaranjan Nayak
  • Ardhendu Saha
  • Alireza Aghajamali
Original Paper


The present work is to numerically investigate the properties of the defect mode in a one-dimensional photonic crystal made of magnetized cold plasma, doped by semiconductor. The defect mode of such kind of multilayer structure is analyzed by applying the character matrix method to each individual layer. Numerical results illustrate that the defect mode frequency can be tuned by varying the external magnetic field, the electron density, and the thickness of the defect layer. Moreover, the behavior of the defect mode was found to be quite interesting when study the oblique incidence. It was found that for both right- and left-hand polarized transversal magnetic waves, the defect mode of the proposed defective structure disappears when the angle of incidence is larger than a particular oblique incidence. For the left-hand polarized transversal electric wave, however, an additional defect mode was noticed. The results lead to some new information concerning the designing of new types of tunable narrowband microwave filters.


1D photonic crystal Defect mode Magnetized cold plasma Semiconductor 


42.70.Qs 78.20.Ek 52.25.Xz 42.70.Nq 


  1. [1]
    H Shen, Z Wang, Y Wu and B Yang RSC Adv. 6 4505 (2016)CrossRefGoogle Scholar
  2. [2]
    I Pavlichenko, E Broda, Y Fukuda, K Szendrei, A K Hatz, G Scarpa, P Lugli, C Brauchle and B V Lotsch Mater. Horiz. 2 299 (2015)CrossRefGoogle Scholar
  3. [3]
    F Frascella, S Ricciardi, P Rivolo, V Moi, F Giorgis, E Descrovi, F Michelotti, P Munzert, N Danz, L Napione, M Alvaro and F Bussolino Sensors 13 2011 (2013)CrossRefGoogle Scholar
  4. [4]
    C Liu, X Liu, H Xuan, J Ren and L Ge Sci. Rep. 5 18419 (2015)ADSCrossRefGoogle Scholar
  5. [5]
    F Javier Ramos, M Oliva-Ramírez, M K Nazeeruddin, M Graetzel, A R González-Elipe and S Ahmad J. Mater. Chem. A 4 4962 (2016)CrossRefGoogle Scholar
  6. [6]
    D M Bierman, A Lenert, W R Chan, B Bhatia, I Celanovic, M Soljacic and E N Wang Nat. Energy 1 16068 (2016)ADSCrossRefGoogle Scholar
  7. [7]
    G Sharma, S Kumar, S Prasad and V Singh J. Mod. Opt. 63 995 (2016)ADSCrossRefGoogle Scholar
  8. [8]
    Ph St J Russell, T A Birks and F D Lloyd-Lucas Confined Electrons and Photons (Berlin: Springer) (1995)Google Scholar
  9. [9]
    Y -H Chang, M -D Ou and C -J Wu Opt. Commun. 321 167 (2014)ADSCrossRefGoogle Scholar
  10. [10]
    A. Madani and S. R. Entezar Phys. B 431 1 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    K -J Lee, J -W Wu and K Kim Opt. Mater. Express 4 2542 (2014)CrossRefGoogle Scholar
  12. [12]
    B Xu, G Zheng and Y Wu Mod. Phy. Lett. B 29 1550128 (2015)ADSCrossRefGoogle Scholar
  13. [13]
    S R Entezar Superlattices Microstruct. 82 33 (2015)ADSCrossRefGoogle Scholar
  14. [14]
    C -J Wu and Z -H Wang Prog. Electromagn. Res. 103 169 (2010)CrossRefGoogle Scholar
  15. [15]
    A Gharaati and H Azarshab Prog. Electromagn. Res. B 37 125 (2012)CrossRefGoogle Scholar
  16. [16]
    T -W Chang, C -J Cheng and C -J Wu Appl. Opt. 55 825 (2016)ADSCrossRefGoogle Scholar
  17. [17]
    Y -H Chen, G -Q Liang, J -W Dong and H -Z Wang Phys. Lett. A 351 446 (2006)ADSCrossRefGoogle Scholar
  18. [18]
    H Jiang, H Chen, H Li and Y Zhang Appl. Phys. Lett. 83 5386 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    L G Wang, H Chen and S Y Zhu Phys. Rev. B 70 245102 (2004)ADSCrossRefGoogle Scholar
  20. [20]
    Y Xiang, X Dai, S Wen and D Fan J. Appl. Phys. 102 093107 (2007)ADSCrossRefGoogle Scholar
  21. [21]
    A Aghajamali and M Barati Commun. Theor. Phys. 60 80 (2013)ADSCrossRefGoogle Scholar
  22. [22]
    A Aghajamali, M Hayati, C -J Wu and M Barati J. Electromagn. Waves Appl. 27 2317 (2013)CrossRefGoogle Scholar
  23. [23]
    A Aghajamali, B Javanmardi, M Barati and C -J. Wu Optik 125 839 (2014)ADSCrossRefGoogle Scholar
  24. [24]
    A Aghajamali, T Alamfard and M Hayati Optik 126 3158 (2015)ADSCrossRefGoogle Scholar
  25. [25]
    M Barati and A Aghajamali Phys. E 79 20 (2016)CrossRefGoogle Scholar
  26. [26]
    M -R Wu, C -J. Wu and S -J. Chang Phys. E 64 146(2014)CrossRefGoogle Scholar
  27. [27]
    J -W Liu, T -W Chang and C -J Wu J. Supercond. Nov. Magn. 27 67 (2014)CrossRefGoogle Scholar
  28. [28]
    R J Macfarlane, B Kim, B Lee, R A Weitekamp, C M Bates, S -F Lee, A B Chang, K T Delaney, G H Frederickson, H A Atwater and R H Grubbs J. Am. Chem. Soc. 136 17374 (2014)CrossRefGoogle Scholar
  29. [29]
    I R Howell, C Li, N S Colella, K Ito and J J Watkins ACS Appl. Mater. Inter. 7 3641 (2015)CrossRefGoogle Scholar
  30. [30]
    S Colodrero, M Ocana and H Miguez Langmuir 24 4430 (2008)CrossRefGoogle Scholar
  31. [31]
    A H Aly and H A ElSayed J. Mod. Opt. 64 871(2017)ADSCrossRefGoogle Scholar
  32. [32]
    A.H. Aly and D. Mohamed J. Supercond. Nov. Magn. 28 1699(2015)CrossRefGoogle Scholar
  33. [33]
    A H Aly, H A ElSayed and S A El-Naggar J. Mod. Opt. 64 74(2017)ADSCrossRefGoogle Scholar
  34. [34]
    S Sahel, R Amri, L Bouaziz, D Gamra, M Lejeune, M Benlahsen, K Zellama and H Bouchriha Superlattices Microstruct. 97 429 (2016)ADSCrossRefGoogle Scholar
  35. [35]
    A H Aly, S A El-Naggar and H A ElSayed Opt. Express 23 15038(2015)ADSCrossRefGoogle Scholar
  36. [36]
    M -R Wu, C -J Wu and S -J Chang Superlattices Microstruct. 80 206 (2015)ADSCrossRefGoogle Scholar
  37. [37]
    M -R Wu, C -J Wu and S -J Chang IEEE Photon. J. 8 2700309 (2016)Google Scholar
  38. [38]
    A H Aly, W. Sabra and H A ElSayed J. Mod. Phys. B 31 1750123(2017)ADSCrossRefGoogle Scholar
  39. [39]
    S Shukla, S Prasad and V Singh Phys. Plasmas 22 022122 (2015)ADSCrossRefGoogle Scholar
  40. [40]
    A Aghajamali, C -J Wu Appl. Opt. 55 2086 (2016)ADSCrossRefGoogle Scholar
  41. [41]
    A Aghajamali, A Zare and C -J Wu Appl. Opt. 54 8602 (2015)ADSCrossRefGoogle Scholar
  42. [42]
    A Aghajamali Appl. Opt. 55 6336 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    T -C King, C -C Yang, P -H Hsieh, T -W Chang and C -J Wu Phys. E 67 7 (2015)CrossRefGoogle Scholar
  44. [44]
    X -K Kong, S -B Liu, H -F Zhang and C -Z Li Phys. Plasmas 17 103506 (2010)ADSCrossRefGoogle Scholar
  45. [45]
    L Qi, Z Yang, F Lan, X Gao and Z Shi Phys. Plasmas 17 042501 (2010)ADSCrossRefGoogle Scholar
  46. [46]
    B Guo Phys. Plasmas 16 043508 (2009)ADSCrossRefGoogle Scholar
  47. [47]
    T -C King, C -C Wang, W -K Kuo and C -J Wu IEEE Photon. J. 5 2700706 (2013)CrossRefGoogle Scholar
  48. [48]
    A G Ardakani J. Opt. Soc. Am. B 31 332 (2014)ADSCrossRefGoogle Scholar
  49. [49]
    A H Aly, H A ElSayed, A A Ameen and S. H. Mohamed Int. J. Mod. Phys. B 31 1750239 (2017)ADSCrossRefGoogle Scholar
  50. [50]
    O Sakai and K Tachibana Plasma Sources Sci. Technol. 21 013001(2012)ADSCrossRefGoogle Scholar
  51. [51]
    O Sakai, T Sakaguchi and K Tachibana Appl. Phys. Lett. 87 241505 (2005)ADSCrossRefGoogle Scholar
  52. [52]
    O Sakai, T Sakaguchi and K Tachibana J. Appl. Phys. 101 073304 (2007)ADSCrossRefGoogle Scholar
  53. [53]
    T Naito, O Sakai and K Tachibana Appl. Phys. Express 1 066003 (2008)ADSCrossRefGoogle Scholar
  54. [54]
    M Born and E Wolf Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press) (2005)MATHGoogle Scholar
  55. [55]
    H G Booker Cold Plasma Waves (Berlin: Springer) (1984)CrossRefGoogle Scholar
  56. [56]
    C R Pidgeon Handbook on Semiconductors (Amsterdam: North-Holland) (1980)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of Technology AgartalaAgartalaIndia
  2. 2.Department of Electronics and Telecommunication EngineeringSandip Institute of Engineering and ManagementNashikIndia
  3. 3.Department of Physics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
  4. 4.Department of Physics and AstronomyCurtin UniversityPerthAustralia

Personalised recommendations