Skip to main content
Log in

First principle calculations of structural, electronic and magnetic properties of cubic GdCrO3 Perovskite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, electronic and magnetic properties of the cubic GdCrO3 perovskite are investigated by mean the full-potential linearized augmented plane wave method based on the density functional theory. We have used three approximations: the generalized gradient (GGA), the GGA + U, where U is on-site Coulomb interaction correction, and the modified Becke–Johnson (mBJ-GGA). Calculated Lattice parameters are where found to be in a very good agreement with experimental measurements. Our results of spin-polarized band structure and density of states show a metallic character of GdCrO3 when using the GGA scheme, whereas a half-metallic ferromagnetic behavior is observed in both cases of GGA + U and mBJ-GGA approaches with an important total magnetic moment of 10.00 μB. The obtained results show that GdCrO3 is an excellent candidate to spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H P R Frederikse, W R Thurber and W R Hosler Phys. Rev. 134 A442 (1964)

    Article  ADS  Google Scholar 

  2. C B Samantaray, H Sim and H Hwang Phys. B 351 158 (2004)

    Article  ADS  Google Scholar 

  3. J G Bednorz and K A Muller Phys. Rev. Lett. 52 2289 (1984)

    Article  ADS  Google Scholar 

  4. C B Samantaray, H Sim and H Hwang J. Microelectron. 36 725 (2005)

    Article  Google Scholar 

  5. A J Millis, B I Shraiman and R Mueller Phys. Rev. Lett. 77 175 (1996)

    Article  ADS  Google Scholar 

  6. Y Tokura Colossal magnetoresistive oxides (Amsterdam: Gordon and Breach Science Publishers) (2000)

    Google Scholar 

  7. H Wang, B Wang, Q Li, Z Zhu, R Wang and C H Woo Phys. Rev. B 75 245209 (2007)

    Article  ADS  Google Scholar 

  8. P Baettig, C F Schelle, R LeSar, U V Waghmare and N A Spaldin Chem. Mater. 17 1376 (2005)

    Article  Google Scholar 

  9. X J Liu, Z J Wu, X F Hao, H P Xiang and J Meng Chem. Phys. Lett. 416 7 (2005)

    Article  ADS  Google Scholar 

  10. I Zutic, J Fabian and S D Sarma Rev. Mod. Phys. 76 323 (2004)

    Article  ADS  Google Scholar 

  11. M Karaca, S Kervan and N Kervan J. Alloys Compd. 639 162 (2015)

    Article  Google Scholar 

  12. D B Meadowcraft, P G Meier and A C Warren Energy Convers. 12 145 (1972)

    Article  Google Scholar 

  13. K Cico, K Husekova, M Tapajna, D Gregusova, R Stoklas, J Kuzmik, J F Carlin, N Grandjean, D Pogany and K Frohlich J. Vac. Sci. Technol. B 29 01A808 (2011)

    Article  Google Scholar 

  14. B Bouadjemi, S Bentata, A Abbad, W Benstaali and B Bouhafs Solid State Commun. 168 6 (2013)

    Article  ADS  Google Scholar 

  15. A Abbad, W Benstaali, H A Bentounes, S Bentata and Y Benmalem Solid State Commun. 228 36 (2016)

    Article  ADS  Google Scholar 

  16. B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid State Commun. 207 9 (2015)

    Article  ADS  Google Scholar 

  17. B Merabet, Y Al-Douri, H Abid and A H Reshak J. Mater. Sci. 48 758 (2013)

    Article  ADS  Google Scholar 

  18. S Nazir, N Ikram, S A Siddiqi, Y Saeed, A Shaukat and A H Reshak Curr Opin Solid State Mater. Sci. 14 1 (2010)

    Article  ADS  Google Scholar 

  19. Y Saeed, S Nazir, A Shaukat and A H Reshak J. Magn. Magn. Mater. 322 3214 (2010)

    Article  ADS  Google Scholar 

  20. H S Saini, M Singh, A H Reshak and M K Kashyap J. Alloys. Compd. 536 214 (2012)

    Article  Google Scholar 

  21. H S Saini, M Singh, A H Reshak and M K Kashyap Comput. Mater. Sci. 74 114 (2013)

    Article  Google Scholar 

  22. M Singh, H S Saini, J Thakur, A H Reshak and M K Kashyap J. Solid State Chem. 208 71 (2013)

    Article  ADS  Google Scholar 

  23. A H Reshak, Z Charifi and H Baaziz J. Magn. Magn. Mater. 326 210 (2013)

    Article  ADS  Google Scholar 

  24. A Yanase and K Siratori J. Phys. Soc. Jpn. 53 312 (1984)

    Article  ADS  Google Scholar 

  25. K Schwartz J. Phys. F: Met. Phys. 16 L211 (1986)

    Article  ADS  Google Scholar 

  26. J M D Coey and M Venkatesan J. Appl. Phys. 91 8345 (2002)

    Article  ADS  Google Scholar 

  27. S M Watts, S Wirth, S V Molnar, A Barry and J M D Coey Phys. Rev. B 61 9621 (2000)

    Article  ADS  Google Scholar 

  28. W Pickett and D Singh Phys. Rev. B 53 1146 (1996)

    Article  ADS  Google Scholar 

  29. G M Müller, J Walowski, M Djordjevic, G X Miao, A Gupta, A V Ramos, K Gehrke, V Moshnyaga, K Samwer, J Schmalhorst, A Thomas, A Hütten, G Reiss, J S Moodera and M Münzenberg Nat. Mater. 8 56 (2009)

    Article  ADS  Google Scholar 

  30. K Yoshii J. Solid State Chem. 159 204 (2001)

    Article  ADS  Google Scholar 

  31. T Kurashina, K Hirose, S Ono, N Sata and Y Ohishi Phys. Earth Planet. Inter. 145 67 (2004)

    Article  ADS  Google Scholar 

  32. T Komabayashi, K Hirose, N Sata, Y Ohishi and L S Dubrovinsky Earth Planet. Sci. Lett. 260 564 (2007)

    Article  ADS  Google Scholar 

  33. J M Porras-Vazquez and P R Slater J. Power Sources 209 180 (2012)

    Article  Google Scholar 

  34. A Zahid, A Iftikhar, I Khan and B Amin Intermetallics 31 287 (2012)

    Article  Google Scholar 

  35. P Poopanya and A Yangthaisong Phys. B: Condens. Matter 419 32 (2013)

    Article  ADS  Google Scholar 

  36. D A Landínez Téllez, D P Llamosa, C E Deluque Toro, Arles V Gil Rebaza and J Roa-Rojas J. Mol. Struct. 1034 233 (2013)

    Article  ADS  Google Scholar 

  37. A Schäfer, K Rahmanizadeh, G Bihlmayer, M Luysberg, F Wendt, A Besmehn, A Fox, M Schnee, G Niu, T Schroeder, S Mantl, H Hardtdegen, M Mikulics and J Schubert J. Alloys Compd. 651 514 (2015)

    Article  Google Scholar 

  38. R Uecker, H Wilke, D G Schlom, B Velickov, P Reiche, A Polity, M Bernhagen and M Rossberg J. Cryst. Growth 295 84 (2006)

    Article  ADS  Google Scholar 

  39. R L Moreira and A Dias J. Phys. Chem. Solids 68 1617 (2007)

    Article  ADS  Google Scholar 

  40. G S Rohrer Structure and Bonding in Crystalline Materials (UK: Cambridge University Press) (2001)

    Book  Google Scholar 

  41. L W Martin, Y H Chu and R Ramesh Mater. Sci. Eng. R 68 89 (2010)

    Article  Google Scholar 

  42. W Kohn and L S Sham Phys. Rev. A 1133 140 (1965)

    Google Scholar 

  43. K Schwarz and P Blaha Comput. Mater. Sci. 28 259 (2003)

    Article  Google Scholar 

  44. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J. Luitz WIEN2K, An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Austria: Techn. Universitat Wien) (2001)

    Google Scholar 

  45. D J Singh Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic Publishers) (1994)

    Book  Google Scholar 

  46. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  47. C Loschen, J Carrasco, K M Neyman and F Illas Phys. Rev. B 75 35115 (2007)

    Article  ADS  Google Scholar 

  48. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  Google Scholar 

  49. D Koller, F Tran and P Blaha Phys. Rev. B 83 195134 (2011)

    Article  ADS  Google Scholar 

  50. F D Murnaghan Proc. Natl. Acad. Sci. U.S.A. 30 244 (1944)

    Article  ADS  Google Scholar 

  51. L Q Jiang, J K Guo, H B Liu, M Zhu, X Zhou, P Wu and C H Li J. Phys. Chem. Solids 67 1531 (2006)

    Article  ADS  Google Scholar 

  52. A S Verma and V K Jindal J. Alloys Compd. 485 514 (2009)

    Article  Google Scholar 

  53. A S Verma and A Kumar J. Alloys Compd. 541 210 (2012)

    Article  Google Scholar 

  54. M Rezaiguia, W Benstaali, A Abbad, S Bentata and B Bouhafs J. Supercond. Nov. Magn 30 2581 (2017)

    Article  Google Scholar 

  55. S Berri, D Maouche, M Ibrir and B Bakri Mater. Sci. Semicond. Process. 26 199 (2014)

    Article  Google Scholar 

  56. K H Hellwge and A M Hellwege Ferroelectrics and Related Substances (Berlin: Springer) vol. 3 (1969)

    Google Scholar 

  57. R D King-Smith and D Vanderbilt Phys. Rev. B 49 5828 (1994)

    Article  ADS  Google Scholar 

  58. R K Thapa, Sandeep, M P Ghimire and Lalmuanpuia Indian J. Phys. 85. 727 (2011)

  59. D J Singh Phys. Rev. B 82 205102 (2010)

    Article  ADS  Google Scholar 

  60. S Gong and B G Liu Phys. Lett. A 375 1477 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabria Terkhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terkhi, S., Bentata, S., Aziz, Z. et al. First principle calculations of structural, electronic and magnetic properties of cubic GdCrO3 Perovskite. Indian J Phys 92, 847–854 (2018). https://doi.org/10.1007/s12648-018-1174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1174-8

Keywords

PACS Nos.

Navigation