Skip to main content
Log in

Structural, dynamical and thermodynamic properties of CdXP2 (X = Si, Ge) from first principles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, elastic, dynamical and thermodynamic properties of CdXP2 (X = Si, Ge) with chalcopyrite semiconductors have been calculated by using the projector augmented wave method within the generalized gradient approximation. The obtained lattice constants and elastic constants of CdXP2 (X = Si, Ge) are compared with the available experimental and other theoretical results, and the agreements between them are quite well. Also, the elastic anisotropy of CdXP2 (X = Si, Ge) have been evaluated. In addition, the phonon dispersion curves and the corresponding phonon density of states of CdXP2 (X = Si, Ge) have been determined by virtue of a linear response approach to density functional perturbation theory method successfully. Finally, the Helmholtz free energy F, internal energy E, entropy S and the constant volume specific heat C V have also been predicted based on quasi-harmonic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T Ouahrani Ő Yasemin tekin çiftci and M Mebrouki J. Alloys Compd. 610 372 (2014)

    Article  Google Scholar 

  2. R Gautam, P Singh, S Sharma, S Kumari and A S Verma Superlattices Microstruct. 85 859 (2015)

    Article  ADS  Google Scholar 

  3. I Aguilera, J Vidal, P Wahnon, L Reining and S Botti Phys. Rev. B 84 085145 (2011)

    Article  ADS  Google Scholar 

  4. V L Shaposhnikov, A V Krivosheeva, V E Borisenko, J L Lazzari and F A Avitaya Phys. Rev. B 85 205201 (2012)

    Article  Google Scholar 

  5. K T Zawilski, S D Setzler, P G Schunemann and T M Pollak J. Opt. Soc. Am. B 23 2310 (2006)

    Article  ADS  Google Scholar 

  6. S N Rashkeev and W R L Lambrecht Phys. Rev. B 63 165212 (2000)

    Article  ADS  Google Scholar 

  7. S N Rashkeev, S Limpijumnong and W R L Lambrecht Phys. Rev. B 59 2737 (1999)

    Article  Google Scholar 

  8. V Shaposhnikov, A Krivosheeva, V Borisenko, J L Lazzari and F d’Avitaya Phys. Rev. B 85 205201 (2012)

  9. L Fan, S F Zhu, B J Zhao, B J Chen, Z Y He, H Yang and G Y Liu J. Cryst. Growth 338 228 (2012)

    Article  ADS  Google Scholar 

  10. L Fan, S F Zhu, B J Zhao, B J Chen, Z Y He, H Yang, G Y Liu and X Y Wang J. Cryst. Growth 364 62 (2013)

    Article  ADS  Google Scholar 

  11. G D Zhang, X T Tao, H P Ruan, S P Wang and Q Shi J. Cryst. Growth 340 197 (2012)

    Article  ADS  Google Scholar 

  12. Z Y He, B J Zhao, S F Zhu, B J Chen, H J Hou, Y Yu and L H Xie Comput. Mater. Sci. 72 26 (2013)

    Google Scholar 

  13. O Chalus, P G Schunemann, K T Zawilski, J Biegert and M Ebrahim-Zadeh Opt. Lett. 35 4142 (2010)

  14. F Chiker, B Abbar, A Tadjer, H Aourag and B Khelif Mater. Sci. Eng. B 98 81 (2003)

    Article  Google Scholar 

  15. Y Yu, B J Zhao, S F Zhu, T Gao and H J Hou Solid State Sci. 13 422 (2011)

    Article  Google Scholar 

  16. L Wei, X P Wang, B Liu, Y Y Zhang, X S Lv, Y G Yang, H J Zhang and X Zhao AIP Adv. 5 127236 (2015)

    ADS  Google Scholar 

  17. L W Shi, J Hua, Y Qin, Y P Duan, L Wu, X Q Yang and G Tang J. Alloys Compd. 611 210 (2014)

    Article  Google Scholar 

  18. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  19. G Kresse and J Hafner Phys. Rev. B 47 558 (1993).

    Article  ADS  Google Scholar 

  20. G Kresse and J Furthmuller Phys. Rev. B 54 11169 (1996)

    Article  ADS  Google Scholar 

  21. G Kresse and J Furthmuller Comput. Mater. Sci. 6 15 (1996)

    Article  Google Scholar 

  22. G Kresse and D Joubert Phys. Rev. B 59 1758 (1999)

    Article  ADS  Google Scholar 

  23. J Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  24. B Saha, T D Sands and U V Waghmare J. Appl. Phys. 109 073720 (2011)

    Google Scholar 

  25. A Togo Phonopy, http://sourceforge.net/projects/phonopy/

  26. S C Abrahams and J L Bernstein J. Chem. Phys. 55 796 (1971)

    Article  ADS  Google Scholar 

  27. J P Xiao, Z Y He, S F Zhu, B J Chen and G. Jiang Comput. Mater. Sci. 117 472 (2016)

    Article  Google Scholar 

  28. Z L Lv, Y Cheng, X R Chen and G F Ji Comput. Mater. Sci. 77 114 (2013)

    Google Scholar 

  29. A Mackinnon Numerical Data and Functional Relationships in Science and Technology, Landolt-Bőrnstein New Series, Group III, Pt. H 17 (ed.) O Madelung (Berlin: Springer) (1985)

  30. R Gautam, P Singh, S Sharma, S Kumari and A S Verma Mater. Sci. Semicond. Process. 40 727 (2015)

    Article  Google Scholar 

  31. A S Verma, S Sharma, R Bhandari, B K Sarkar and V K Jindal Mater. Chem. Phys. 132 416 (2012)

    Google Scholar 

  32. M Born and K Huang Dynamical Theory of Crystal Lattices (Oxford: Clarendon) (1954)

    MATH  Google Scholar 

  33. W Voigt Lehrbuchder Kristallphysik,Teubner, Leipzig (1928)

  34. A Reuss and Z Angew. Math. Mech. 8 55 (1929)

    Google Scholar 

  35. R Hill Proc. Phys. Soc. Lond. A 65 349 (1952)

  36. K B Panda and K S Ravi Chandran Comput. Mater. Sci. 35 134 (2006)

    Article  Google Scholar 

  37. O L Anderson J. Phys. Chem. Solids 24 909 (1963)

    Article  ADS  Google Scholar 

  38. V Kumar, A K Shrivastava, R Banerji and D Dhirhe Solid State Commun. 149 1008 (2009)

    Article  ADS  Google Scholar 

  39. J F Nye Physical Properties of Crystals (Oxford: Oxford University Press) (1985)

  40. D L Rousseau, R P Bauman and S P SPorto J. Raman Spectrosc. 10 253 (1981)

    Article  ADS  Google Scholar 

  41. F W Ohrendofr and H Haeuseler Cryst. Res. Technol. 34 351 (1999)

    Article  Google Scholar 

  42. Y Yu, H L Han, Y N Zhao, W H Xue and T Gao Solid State Commun. 148 1 (2008)

    Article  ADS  Google Scholar 

  43. C Lee and X Gonze Phys. Rev. B 51 8610 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of China (Grant Nos. 51402251, 51502259 and 51603179), This work was supported by the joint research fund between Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (GX2015305). Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 14KJD430003). This work was supported by the science and technology project from Ministry of Housing and Urban–Rural Development of the People’s Republic of China (2015-K4-007). This work was supported by prospective research projects in Jiangsu Province (BY2016065-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H.J., Zhu, H.J., Li, S.P. et al. Structural, dynamical and thermodynamic properties of CdXP2 (X = Si, Ge) from first principles. Indian J Phys 92, 315–323 (2018). https://doi.org/10.1007/s12648-017-1109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1109-9

Keywords

PACS Nos.

Navigation