Skip to main content

Advertisement

Log in

Design and Modelling for LCL Filter for Measurement of THD Reduction in Different Modular Multilevel Converters

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Modular multilevel converters (M2Cs) have become an interesting and attractive topology for DC/AC conversions and vice versa. This converter is an efficient power electronic converter for adjustable speed drives, high-voltage direct current transmission, renewable energy systems and large power supplies. For drive applications, a theoretical background is presented. This paper presents the comparative analysis of M2Cs based upon measurement of the total harmonic distortion under 5-level, 7-level, 9-level and 11-level M2C. The mathematical modelling and designing of an inductor–capacitor–inductor filter is proposed at the output for the harmonic reduction. The objective of the proposed overall system is to ensure that the voltage harmonic distortion at the point of common coupling is less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CSCs:

Current source converters;

VSCs:

Voltage source converters;

NPC:

Neutral point clamped;

FC:

Flying capacitor;

CHB:

Cascaded h-bridge;

M2C:

Modular multilevel converter;

HVDC:

High-voltage direct current;

HVAC:

High-voltage alternating current;

THD:

Total harmonic distortion;

SHE:

Specific harmonic elimination;

HEPWM:

Harmonic elimination pulse width modulation;

LCL:

Inductor–capacitor–inductor;

PCC:

Point of common coupling

7. References

  1. Baker, R. H., Bannister, L. H. Electric Power Converter. U.S. Patent 3(1975) 867 643.

  2. Marchesoni, M., Mazzucchelli, M. Multilevel Converters for High Power AC Drives: a Review. IEEE International Symposium on Industrial Electronics Conference Proceedings (1993).

  3. Rodriguez, J., Lai J. S., Peng, F. Z. Multilevel Inverters: A Survey of Topologies, Controls, and Applications. IEEETransactions on Industrial Electronics, Vol. 49,No. 4(2002).

  4. Lesnicar, A., Marquardt, R. An Innovative Modular Multilevel Converter Topology Suitable for Wide Power Range. Proc. Of IEEE Power Tech Conf., 2003 (2003) 1–6

    Google Scholar 

  5. Tu, Q., Xu, Z., Chang, Y., Guan, L. Suppressing DC Voltage Ripples of M2C-HVDC Under Unbalanced Grid Conditions. IEEE Transaction on Power Delivery, 27 (2012) 1332–1338

    Article  Google Scholar 

  6. Bergna, G., Berne, E., Egrot, P., Lefranc, P., Arzande, A., Vannier, J. C., Molinas, M. An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference for Voltage Oscillation Reduction. IEEE Transaction on Industrial Electronics, 60 (2014) 2360–2371

    Article  Google Scholar 

  7. Antonopoulos, A., Ängquist, L., Norrga, S., Ilves, K., Harnefors, L., Nee, H. Modular Multilevel Converter AC Motor Drives With Constant Torque From Zero to Nominal Speed. IEEE Transaction on Industry Application, 50 (2014) 1982–1993

    Article  Google Scholar 

  8. Ota, J. I. Y., Shibano, Y., Akagi, H. A Phase-Shifted PWM D-STATCOM Using a Modular Multilelvel Casade Converter (SSBC) - Part II: Zero-Voltage-Ride-Through Capability. IEEE Transaction on Industrial Electronics, 51 (2015) 289–296

    Google Scholar 

  9. Mohammadi, P.H., Bina, M.T. Transformerless Medium-Voltage STATCOM Topology Based on Extended Modular Multilevel Converters. IEEE Transaciton on Power Electronics, 26 (2014) 174–179

    Google Scholar 

  10. Antonpoulos, A., Angquist, L., Harnefors, L., Nee, H. P. Optimal Selection of the Average Capacitor Voltage forVariable-Speed Drives With Modular Multilevel Converters. IEEE. Transaction of Power Electronics, 30 (2015) 227–234

    Article  ADS  Google Scholar 

  11. Gnanarathna, U., Gole, A. M., Jayasinghe, R. P. Efficient Modelling of Modular Multilevel HVDC Converters (M2C) on the Electromagnetic Transient Simulation Programs. IEEE Transaction on Power Delivery, 26 (2011) 316–324

    Article  Google Scholar 

  12. Son, G. T., Lee, H. J., Nam, T. S., Chung, Y. H., Lee, U. H., Baek, S. T., Park, J. W. Design and Control of a Modular Multilevel HVDC Converter Woth Redundant Power Modules for Non interruptible Energy Transfer. IEEE Transaction on Power Delivery, 27 (2012) 1611–1619

    Article  Google Scholar 

  13. Rohner, S. Modulation, Losses, and Semiconductor Requirements of Modular Multilevel Converters. IEEE Transactions on Industrial Electronics, 57 (2010) 2633–2642

    Article  Google Scholar 

  14. Attia, A. H., Metwally, M. E., Fahmy, O. M. Harmonic Distortion Effects and Mitigation in Distribution Systems. Journal of Americal Sience; 6(10): (2010) 173–183.

  15. Jeevananthan, S. Evolutionary Computing Based Area Integration PWM Technique for Multilevel Inverters. Journal of Electrical Systems; 3(2) (2007) 61–72.

  16. Bhuvaneswari, G., Nair, M. G. Three-Phase Hybrid Shunt Filters for Power Quality Improvement. Journal of Power Electronics; 7(3) (2007) 257–264.

  17. Jegathesan, V., Jerome, J. Non-Traditional Method-Based Solution for Elimination of Lower Order Harmonics in Voltage Source Inverter Feeding an Induction Motor Drive. Siberian Journal of Electrical Engineering; 5(2) (2008) 273–283.

  18. Salam, Z. An On-Line Harmonic Elimination Pulse Width Modulation Scheme for Voltage Source Inverter.Journal of Power Electronics; 10(1) (2010) 43–50.

  19. Bouhali, O., Berkouk, M., Francois, B., Saudemont, C., Labiod, S. Solving Harmonics Elimination Problem in Three- Phase Voltage controlled Inverter using Artificial Neural Networks.Journal of Electrical Systems; 1(1) (2005) 39–51.

  20. Liserre, M., Blaabjerg, F., Hansen, S. Design and Control of LCL-filter-Based Three-phase Active Rectifier. IEEE transactions on Industry Applications, 41 (2005) 1281–1291

    Article  Google Scholar 

  21. Yu, N., Chen, S., Ye, M. Design of LCL Filter Based Three Level Active Power Filters. Indonesian Journal of Electrical Engineering, 12 (2014) 48–56

    Google Scholar 

  22. Malinowski, M., Stynski, S., Kolomyjski, W., Kajmierkowski, M. P. Control of Three-Level PWM Converter Applied to Variable-Speed-Type Turbines. IEEE Trans. Ind. Electron, 56 (2009) 69–77

    Article  Google Scholar 

  23. Gabe, I. J., Montagner, V. F., Pinheiro, H. Design and Implementation of a Robust Current Controller for VSI Connected to the Grid Through and LCL-filter. IEEE Trans. Power Electron., 24 (2009) 1444–1452

    Article  ADS  Google Scholar 

  24. IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resourced with Electric Power Systems-Amendment 1,” (2015) 1–27.

  25. Venkataramanan, S. B. A., Ayyanar, R., Maracas, G., Tamizhmani, G., Marinella, M., Granata, J. Gap Analysis Towards a Design Qualification Standard Development for Grid-Connected Photovoltaic Inverters. IEEE Photovoltaic Specialists Conference, (2011) 3744–3749.

  26. Ruiz, G. E. M., Rodríguez, J. R., Galeano, N. M., Zamora, A. Grid-Connected Three-Phase Inverter System with LCL Filter: Model, Control and Experimental Results. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, (2019) 1-6, doi: https://doi.org/10.1109/ISGT-LA.2019.8895017.

  27. Rab, S., Yadav, S., Garg, N., Rajput, S., Aswal, D. K. Evolution of Measurement System and SI Units in India. MAPAN (2020). https://doi.org/10.1007/s12647-020-00400-6

    Article  Google Scholar 

  28. Yadav, S., Aswal, D. K. Redefined SI Units and Their Implications. MAPAN, 35 (2020) 1–9. https://doi.org/10.1007/s12647-020-00369-2

    Article  Google Scholar 

  29. Ekici, C., Teke, I. Measurement Uncertainty Analysis of Temperature Based Solar Radiation Estimation Models. MAPAN, 33 (2018) 233–240. https://doi.org/10.1007/s12647-018-0258-4

    Article  Google Scholar 

  30. Xu, Y., Du, Y., Li, Z., Xi, L., Liu, Y. Harmonic Parameter Online Estimation in Power System Based on Hann Self-Convolving Window and Equidistant Two-Point Interpolated DFT. MAPAN, 35 (2020) 69–79. https://doi.org/10.1007/s12647-019-00344-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Jatin & Jadoun, V. Design and Modelling for LCL Filter for Measurement of THD Reduction in Different Modular Multilevel Converters. MAPAN 36, 599–606 (2021). https://doi.org/10.1007/s12647-021-00433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00433-5

Keywords

Navigation