A Review of Diameter Measurement and a Proposal for the Improvement Thereof

Abstract

In order to establish traceability of area of pressure measurement, piston–cylinder assemblies are characterized dimensionally. Piston, cylinder and master ring gauges demand diameter measurement uncertainty of about 30 nm. As focused efforts to achieve the requisite uncertainty, most of the trendy diameter measuring machines, used and available across the globe, are studied for their designs and performance. Conceptually, the uncompensated systematic error contributes significantly to the uncertainty of the measurements. In order to understand the magnitudes of the various errors, some of the key comparison reports are also studied. Based on the analysis of the review, laser-based displacement interferometer measurement systems are proposed. Theoretically, the proposed models reduce the Abbe’s error.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    R.E. Edsinger, L.A. Guildner and R.L. Anderson, Precision measurement of internal diameters of long, small bore metal tubing, Rev. Sci. Instrum., 42(7) (1971) 945–950.

    ADS  Article  Google Scholar 

  2. 2.

    ISO 1938-1:2015, Geometrical product specifications (GPS)—dimensional measuring equipment—part 1: plain limit gauges of linear size (2015).

  3. 3.

    DIN 2269:1998-11, Verification of geometrical parameters—cylindrical measuring pin.

  4. 4.

    DIN 2250-1:2008-10, Geometrical product specifications (GPS)—GO ring gauges and setting ring gauges—part 1: from 1 mm up to 315 mm nominal diameter.

  5. 5.

    IS 3485: 1998, Plain and master setting ring gauges (size range from 1 up to and Including 315 mm (1998).

  6. 6.

    IS 919-1: 1993, ISO systems of limits and fits, part 1: bases of tolerance, deviations, and fits (1993).

  7. 7.

    ISO 286-1:2010, Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes—part 1: basis of tolerances, deviations and fits (2008).

  8. 8.

    D. Macii and D. Petri, Guidelines to manage measurement uncertainty in conformance testing procedures, IEEE Trans. Instrum. Meas., 58(1) (2008) 33–40.

  9. 9.

    G. Ardimento, Some simple considerations about the test-uncertainty ratio (TUR) in legal metrology, Bull. Organ. Int. Métrol. 3–4 (2008) 5–10.

    Google Scholar 

  10. 10.

    S.A. Khanam and E. Morse, Test uncertainty and test uncertainty ratio (TUR), In Proceedings of the ASPE annual meeting (2008).

  11. 11.

    K. Bennett and H. Zion, Metrology concepts: understanding test uncertainty ratio (TUR), calibrate with confidence, TRANSCAT Calibration & Repair Services (2005).

  12. 12.

    D.A. Swyt, Issues in precision tolerance manufacturing: a report of a NIST industry-needs workshop, report, Gaithersburg, MD, August 11–12, 1992, J. Res. Natl. Inst. Stand. Technol., 98(2) March–April (1993).

  13. 13.

    IS 15371-1, Geometrical product specification (GPS) inspection by measurement of work pieces, and measuring equipment, part 1: decision rules for providing conformance or non-conformance with specifications.

  14. 14.

    IS 11103 (2005), Cylindrical measuring pins.

  15. 15.

    G. Molinar, M. Bergoglio, W. Sabuga, P. Otal, G. Ayyildiz, J. Verbeek and P. Farar, Calculation of effective area A0 for six piston–cylinder assemblies of pressure balances. Results of the EUROMET project 740, Metrologia, 42(6) (2005) S197.

  16. 16.

    R. Dadson, S. Lewis and G. Peggs, The pressure balance: theory and practice, HMSO, London, (1982).

    Google Scholar 

  17. 17.

    IS 15371-2, 2007: Geometrical product specifications (GPS)—inspection by measurement of work pieces and measuring equipment, part 2: guide to the estimation of uncertainty in GPS measurement, in the calibration of measuring equipment and in product verification.

  18. 18.

    ISO 14253-2:2011, Geometrical product specifications (GPS)—inspection by measurement of workpieces and measuring equipment—part 2: guidance for the estimation of uncertainty in GPS measurement, in calibration of measuring equipment and in product verification (2011).

  19. 19.

    ISO 14978:2018, Geometrical product specifications (GPS)—general concepts and requirements for GPS measuring equipment (2018).

  20. 20.

    IS 3455-1, 1985: Gauging practice for plain work pieces, part 1: inspection of plain work pieces with indicating measuring instruments.

  21. 21.

    P.J. deGroot and V.G. Badami, Revelations in the art of fringe counting: the state of the art in distance measuring interferometry, In Fringe, Springer, Berlin, (2014) pp. 785–790.

  22. 22.

    N. Ohsawa, H. Matsumoto, A. Hirai, M. Arai, T. Shimizu and T. Kikuchi, Non-contact remote measurements of ring gauge using a low-coherence interferometer. In 10th int. symposium on measurement and quality control (2010).

  23. 23.

    S. Ali, Probing system characteristics in coordinate metrology, Meas. Sci. Rev., 10(4) (2010) 120–129.

    ADS  Article  Google Scholar 

  24. 24.

    S.H. Mian and A. Al-Ahmari, New developments in coordinate measuring machines for manufacturing industries, Int. J. Metrol. Qual. Eng., 5(1) (2014) 101.

    Article  Google Scholar 

  25. 25.

    M. Abe, O. Sato and T. Takatsuji, Modeling and analysis on alignment error of four path step gauge interferometer, Mapan, 31(2) (2016) 81–88.

    Article  Google Scholar 

  26. 26.

    V. Byman, T. Jaakkola, I. Palosuo and A. Lassila, High accuracy step gauge interferometer, Meas. Sci. Technol., 29(5) (2018) 054003.

    ADS  Article  Google Scholar 

  27. 27.

    R. Köning, C. Weichert, P. Köchert, J. Guan and J. Flügge, Redetermination of the abbe errors’ uncertainty contributions at the nanometer comparator, Measurement, (2013) 171–174.

  28. 28.

    S.D. Phillips, B. Toman and W.T. Estler, Uncertainty due to finite resolution measurements, J. Res. Natl. Inst. Stand. Technol., 113(3) (2008) 143.

    Article  Google Scholar 

  29. 29.

    R.R. Cordero, G. Seckmeyer and F. Labbe, Effect of the resolution on the uncertainty evaluation, Metrologia, 43(6) (2006) L33.

  30. 30.

    J. Stone, B. Muralikrishnan and C. Sahay, Geometric effects when measuring small holes with micro contact probes. J. Res. Natl. Inst. Stand. Technol., 116(2) (2011) 573.

    Article  Google Scholar 

  31. 31.

    G. Dai, M. Neugebauer, M. Stein, S. Bütefisch and U. Neuschaefer-Rube, Overview of 3D micro-and nanocoordinate metrology at PTB, Appl. Sci., 6(9) (2016) 257.

  32. 32.

    A. Vissiere, H. Nouira, M. Damak, O. Gibaru and J.M. David, Concept and architecture of a new apparatus for cylindrical form measurement with a nanometric level of accuracy, Meas. Sci. Technol., 23(9) (2012) 094014.

    ADS  Article  Google Scholar 

  33. 33.

    G.J. Kotte and H. Haitjema, Ball diameter measuring instrument in a gauge block interferometer, In Recent developments in optical gauge block metrology (Vol. 3477), international society for optics and photonics (1998) pp. 101–108.

  34. 34.

    R. Thalmann, F. Meli and A. Küng, State of the art of tactile micro coordinate metrology, Appl. Sci., 6(5) (2016) 150.

    Article  Google Scholar 

  35. 35.

    J.A. Kim, J.W. Kim, C.S. Kang and T.B. Eom, An interferometric Abbe-type comparator for the calibration of internal and external diameter standards, Meas. Sci. Technol., 21(7) (2010) 075109.

    ADS  Article  Google Scholar 

  36. 36.

    F. Lüdicke, O. Jusko and H. Reimann, Form and length measurements using a modified commercial form measuring instrument. In Proc. ASPE 15th ann. meeting (Scottdale, AZ) (2000) pp. 389–92.

  37. 37.

    M. Neugebauer, F. Lüdicke, D. Bastam, H. Bosse, H. Reimann and C. Töpperwien, A new comparator for measurement of diameter and form of cylinders, spheres and cubes under clean-room conditions, Meas. Sci. Technol., 8(8) (1997) 849.

    ADS  Article  Google Scholar 

  38. 38.

    M. Neugebauer, The uncertainty of diameter calibrations with the comparator for diameter and form, Meas. Sci. Technol., 9(7) (1998) 1053.

    ADS  Article  Google Scholar 

  39. 39.

    A. Vissiere, H. Nouira, M. Damak, O. Gibaru and J.M. David, A newly conceived cylinder measuring machine and methods that eliminate the spindle errors. Meas. Sci. Technol., 23(9) (2012) 094015.

    ADS  Article  Google Scholar 

  40. 40.

    J.D. Claverley and R.K. Leach, A vibrating Micro-scale CMM Probe for measuring high aspect ratio structures, Microsyst. Technol., 16(8–9) (2010) 1507–1512.

    Article  Google Scholar 

  41. 41.

    U. Brand and J. Kirchhoff, A Micro-CMM with metrology frame for low uncertainty measurements, Meas. Sci. Technol. 16(12) (2005) 2489.

    ADS  Article  Google Scholar 

  42. 42.

    K.C. Fan, F. Cheng, W.T. Pan and R. Li, Analysis of the contact probe mechanism for micro-coordinate measuring machines, optoelectron. Instrum. Data Process., 46(4) (2010) 340–346.

    Article  Google Scholar 

  43. 43.

    K.C. Fan, F. Cheng, H.Y. Wang and J.K. Ye, The system and the mechatronics of a pagoda type micro-CMM, Int. J. Nanomanuf., (2012).

  44. 44.

    K.C. Fan, Y.T. Fei, X.F. Yu, Y.J. Chen, W.L. Wang, F. Chen and Y.S. Liu, Development of a low-cost micro-CMM for 3D micro/nano measurements, Meas. Sci. Technol., 17(3) (2006) 524.

    ADS  Article  Google Scholar 

  45. 45.

    K.C. Fan, F. Cheng, W. Wang, Y. Chen and J.Y. Lin, A scanning contact probe for a micro-coordinate measuring machine (CMM). Meas. Sci. Technol., 21(5) (2010) 054002,

  46. 46.

    Q. Song, W. Wu, S. Zhu and H. Yan, Optical path design of the external diameter measurement system based on CCD and parallel light projection method with double light paths, In International symposium on photoelectronic detection and imaging 2007: related technologies and applications (Vol. 6625). International Society for Optics and Photonics (2008) p. 66251U.

  47. 47.

    G.B. Picotto, KEY COMPARISON: Final report on EUROMET. L-K4: calibration of diameter standards, group 1, Metrologia, 47 (2010) 04003.

  48. 48.

    M. Neugebauer and F. Lüdicke, EUROMET comparison: diameter of small ring gauges, Metrologia, 38(3) (2001) 259.

    ADS  Article  Google Scholar 

  49. 49.

    T. Doiron, J.A. PiresAlves, B.R. Gastaldi and G. Navarrete, SIM regional comparison SIM.L-K4.2009 on the calibration of internal and external diameter standards, Metrologia, 52 (2015).

  50. 50.

    Calibration Guide, EURAMET/cg-06/v.01, extent of calibration for cylindrical diameter standards, November 2007, EURAMET technical committee for length (2018).

  51. 51.

    R. Thalmann, EUROMET key comparison: cylindrical diameter standards. Metrologia, 37(3) (2000) 253.

    ADS  Article  Google Scholar 

  52. 52.

    J.H. Chin, T. Takatsuji, M. Horita, T. Hamakawa, K.P. Chaudhary, A. Tonmueanwai, N. Alfiyati, O. Kruger, E. Howick, P. Cox and M.B. Sawi, APMP L-K4 Key comparison, calibration of diameter standards, Metrologia, 51(S) (2014).

  53. 53.

    M. Arif Sanjid, K.P. Chaudhary, R.P. Singhal, Calibration of gauge blocks using automatic phase stepping interferometer at NPL with nanometer uncertainty, MAPAN-J. Metrol. Soc. India 21(2) (2006) 103–106.

    Google Scholar 

  54. 54.

    D.A. Swyt, Length and dimensional measurements at NIST. J. Res. Natl. Inst. Stand. Technol., 106(1) (2001) 1.

    Article  Google Scholar 

  55. 55.

    H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt and F. Delbressine, Geometric error measurement and compensation of machines—an update, CIRP Ann., 57(2) (2008) 660–675.

  56. 56.

    R. Loughridge and D.Y. Abramovitch, A tutorial on laser interferometry for precision measurements, In 2013 American control conference (2013) pp. 3686–3703.

  57. 57.

    B. Chen, E. Zhang, L. Yan, C. Li, W. Tang and Q. Feng, A Laser interferometer for measuring straightness and its position based on heterodyne interferometry, Rev. Sci. Instrum., 80(11) (2009) 115113.

    ADS  Article  Google Scholar 

  58. 58.

    D. Kim, D. Kang, J. Shim, I. Song and D. Gweon, Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors, Rev. Sci. Instrum., 76(7) (2005) 073706.

    ADS  Article  Google Scholar 

  59. 59.

    S. Ducourtieux and B. Poyet, Development of a metrological atomic force microscope with minimized abbe error and differential interferometer-based real-time position control, Meas. Sci. Technol., 22(9) (2011) 094010.

    ADS  Article  Google Scholar 

  60. 60.

    E.J. Bos, Aspects of tactile probing on the micro scale, Precis. Eng., 35(2) (2011) 228–240.

  61. 61.

    E.J.C. Bos, Tactile 3D probing system for measuring MEMS with nanometer uncertainty. PhD, Eindhoven University of Technology, Netherlands (2008).

    Google Scholar 

  62. 62.

    J. Stone, B. Muralikrishnan and C. Sahay, Geometric effects when measuring small holes with micro contact probes. J. Res. Natl. Inst. Stand. Technol., 116(2) (2011), 573.

    Article  Google Scholar 

  63. 63.

    M. Kühnel, V. Ullmann, U. Gerhardt and E. Manske, Automated setup for non-tactile high-precision measurements of roundness and cylindricity using two laser interferometers, Meas. Sci. Technol., 23(7) (2012) 074016.

    ADS  Article  Google Scholar 

  64. 64.

    V. Korpelainen, Traceability for nanometre scale measurements: atomic force microscopes in dimensional nanometrology, (2014).

  65. 65.

    J. Unkuri, A. Rantanen, J. Manninen, V.P. Esala and A. Lassila, Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments, Meas. Sci. Technol., 23(9) (2012) 094017.

    ADS  Article  Google Scholar 

  66. 66.

    JCGM 100:2008—Evaluation of measurement data—guide to the expression of uncertainty in measurement, Joint Committee for Guides in Metrology, BIPM (2008).

  67. 67.

    M.J. Puttock and E.G. Thwaite, Elastic compression of spheres and cylinders at point and line contact. Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia (1969).

    Google Scholar 

  68. 68.

    Ring Gauges Calibration, MEASUREMENT 2009, Proceedings of the 7th international conference, Smolenice, Slovakia 290.

  69. 69.

    S. Barman and R. Sen, Enhancement of accuracy of multi-axis machine tools through error measurement and compensation of errors using laser interferometry technique, Mapan, 25(2) (2010) 79–87.

    Article  Google Scholar 

  70. 70.

    A. Lassila, MIKES fibre-coupled differential dynamic line scale interferometer. Meas. Sci. Technol., 23(9) (2012) 094011.

    ADS  Article  Google Scholar 

  71. 71.

    M.A.V. Chapman, Environmental compensation of linear laser interferometer readings, Renishaw technical white paper, TE329 (2013).

  72. 72.

    M. Holmes and C. Evans, Displacement measuring interferometry measurement uncertainty, In ASPE topical meeting on uncertainty analysis in measurement and design (Vol. 33) (2004) pp. 89–94.

  73. 73.

    Laser and Optics User’s Manual, Vol. I, 5th ed, Agilent Technologies, Inc.USA (2007).

  74. 74.

    J. Liu and R.M.A. Azzam, Polarization properties of corner-cube retroreflectors: theory and experiment, Appl. Opt., 36(7) (1997) 1553–1559.

  75. 75.

    J. Stone, S.D. Phillips and G.A. Mandolfo, Corrections for wavelength variations in precision interferometric displacement measurements. J. Res. Natl. Inst. Stand. Technol., 101(5) (1996) 671.

    Article  Google Scholar 

  76. 76.

    X. Zhu, V.S. Hsu and J.M. Kahn, Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness, IEEE J. Sel. Top. Quantum Electron., 8(1) (2002) 26–32.

    ADS  Article  Google Scholar 

  77. 77.

    P. deGroot, Jones matrix analysis of high-precision displacement measuring interferometers, Laser, 1(1) (1999) 2.

    Google Scholar 

  78. 78.

    K.C. Fan, H.M. Yen and K.Y. Li, A new concept of volumetric error analysis of machine tools based on Abbé Principle, In Proceedings of the 3rd international conference on design engineering and science, conference on design engineering and science, Pilsen, Czech Republic (Vol. 31) (2014).

  79. 79.

    G.X. Zhang, A study on the Abbe principle and Abbe error, CIRP Ann., 38(1) (1989) 525–528.

    Article  Google Scholar 

  80. 80.

    E. Manske, T. Fröhlich and R. Füßl, Measurement uncertainty consideration in the case of nonlinear models for precision length measurement, International journal of physics conference series (Vol. 588, No. 1), IOP Publishing (2015) p. 012033.

  81. 81.

    http://kcdb.bipm.org/appendix.

  82. 82.

    H. Haitjema, S.J. Cosijns, N.J.J. Roset and M.J. Jansen, improving a commercially available heterodyne laser interferometer to sub-nm uncertainty, in recent developments in traceable dimensional measurements II (Vol. 5190), International Society for Optics and Photonics (2003) , pp. 347–354.

  83. 83.

    S.J.A.G. Cosijns, H. Haitjema and P.H.J. Schellekens, Modeling and verifying non-linearities in heterodyne displacement interferometry, Precis. Eng., 26(4) (2002) 448–455.

    Article  Google Scholar 

  84. 84.

    D.J. Loner, B.A.W.H. Knarren, S.J.A.G. Cosijns, H. Haitjema and P.H.J. Schallakans, Laser polarization state measurement in heterodyne interferometry, CIRP Ann., 52(1) (2003) 439–442.

    Article  Google Scholar 

Download references

Acknowledgements

Authors pay thanks to Director, NPL, to permit to publish the work. Thanks also go to Dr. Ranjana Mehrotra, Dr. Rina Sharma for encouragement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Arif Sanjid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanjid, M.A., Yadav, S., Sen, M. et al. A Review of Diameter Measurement and a Proposal for the Improvement Thereof. MAPAN 35, 275–286 (2020). https://doi.org/10.1007/s12647-019-00360-6

Download citation

Keywords

  • Ring gauge
  • Uncertainty
  • Probing
  • Systematic error
  • The optical setup