MAPAN

, Volume 33, Issue 2, pp 99–112 | Cite as

Estimation of Uncertainty in the Determination of Serum Electrolytes (Na, K, Ca, Mg) by Flame Atomic Absorption Spectroscopy

  • A. M. García-Alegría
  • M. G. Cáñez-Carrasco
  • M. Serna-Félix
  • K. K. Encinas Soto
  • A. Gómez-Álvarez
Original Paper
  • 89 Downloads

Abstract

From a standardized and validated method to quantify serum electrolytes (Na, K, Ca and Mg) by flame atomic absorption spectroscopy, combined relative uncertainty (CRSU) and the percentage of combined relative standard uncertainty (% CRSU) were determined. For this, analytical grade standards were used and later from a certified reference material (NIST2670a). Previously, the sources of uncertainty used in the measurement using the Ishikawa diagram (cause-effect) were established, including mass concentration, calibration curves, volume, reactive targets, certified reference material, dilution and repeatability. Quantification of the metals was performed using the atomic absorption spectroscopy technique employing a Perkin Elmer model 3100 equipment. The values obtained for the CRSU on average are below 0.030 and for the % CRSU on average they are below 3.1%. These results indicate that the uncertainty values are acceptable since they are below the recommended values for these metals.

Keywords

Uncertainty Serum electrolytes Atomic absorption spectroscopy 

Notes

Acknowledgements

The support and facilities provided by the Department of Biological Chemistry and the Department of Chemical Engineering and Metallurgy of the University of Sonora for the realization of this research project are appreciated. Likewise, the participation of Dania Valenzuela is appreciated, for the revision and correction of the written document in English.

References

  1. [1]
    International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 17025: 2005, General Requirements for the Competence of Testing and Calibration Laboratories, (2005).Google Scholar
  2. [2]
    ICH Q2R1, Validation of Analytical Procedures, Harmonized Tripartite Guideline, (2005) pp. 1–13.Google Scholar
  3. [3]
    V. Iyengar, Metrology in Physics, Chemistry, and Biology, Differing Perceptions, Biol. Trace Elem. Res. 116 (2007) 1–4.  https://doi.org/10.1007/BF02685914.CrossRefGoogle Scholar
  4. [4]
    M. Thompson, S.L.R. Ellison, and R. Wood, Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis, (IUPAC Technical Report), Pure Appl. Chem. 74 (5) (2002) 835–855.CrossRefGoogle Scholar
  5. [5]
    H.W. Vesper, and L.M. Thienpont, Traceability in Laboratory Medicine, Clin. Chem. 55 (6) (2009) 1067–1075.  https://doi.org/10.1373/clinchem.2008.107052.CrossRefGoogle Scholar
  6. [6]
    I. Farrance, and R. Frenkel, Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components Through Functional Relationships, Clin. Biochem. Rev., 33 (2012) 49–75. (PMCID: PMC3387884).Google Scholar
  7. [7]
    J.S. Krouwer, Point Critique of the Guide to the Expression of Uncertainty in Measurement Method of Estimating and Reporting Uncertainty in Diagnostic Assays, Clin. Chem., 49 (11) (2003) 1818–1821.  https://doi.org/10.1373/clinchem.2003.019505.CrossRefGoogle Scholar
  8. [8]
    K. Gates, N. Chang, I. Dilek, H. Jian, S. Pogue, and U. Sreenivasan, The Uncertainty of Reference Standards-A Guide to Understanding Factors Impacting Uncertainty, Uncertainty Calculations, and Vendor Certifications, J. Anal. Toxicol., 33 (2009) 532–539. (PMID: 19874664).Google Scholar
  9. [9]
    J. Kristiansen, The Guide to Expression of Uncertainty in Measurement Approach for Estimating Uncertainty: An Appraisal. Clin. Chem., 49 (11) (2003) 1822–1829.  https://doi.org/10.1373/clinchem.2003.021469.CrossRefGoogle Scholar
  10. [10]
    V.R. Meyer, Measurement Uncertainty of Liquid Chromatographic Analyses Visualized by Ishikawa Diagrams, J. Chromatogr. Sci., 41 (2003) 439–443.  https://doi.org/10.1093/chromsci/41.8.439.CrossRefGoogle Scholar
  11. [11]
    D. Styarini, O. Zuas, and N. Hamim, Validation and Uncertainty Estimation of Analytical Method for Determination of Benzene in Beverages, Eurasian J. Anal. Chem., 6 (3) (2011) 159–172.Google Scholar
  12. [12]
    A.G. González, and M.A. Herrador, A Practical Guide to Analytical Method Validation, Including Measurement Uncertainty and Accuracy Profiles. Trends Anal. Chem., 26 (3) (2007) 227–238.  https://doi.org/10.1016/j.trac.2007.01.009.CrossRefGoogle Scholar
  13. [13]
    W. Dimech, B. Francis, J. Kox, and G. Roberts, Calculating Uncertainty of Measurement for Serology Assays by Use of Precision and Bias, Clin. Chem., 52 (3) (2006) 526–529.  https://doi.org/10.1373/clinchem.2005.056689.CrossRefGoogle Scholar
  14. [14]
    ISO Guide 99, International Vocabulary of Metrology. Basic and General Concepts and Associated Terms (IVM), (2007).Google Scholar
  15. [15]
    S.L.R. Ellison, Implementing Measurement Uncertainty for Analytical Chemistry: The Eurachem Guide for Measurement Uncertainty, Metrologia, 51 (2014) S199–S205.  https://doi.org/10.1088/0026-1394/51/4/S199.ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    EURACHEM/CITAC Guide CG 4, Quantifying Uncertainty in Analytical Measurement, Editor, S.L.R. Ellison, and A. Williams, 3rd Ed., United Kingdom, (2012) 1–113.Google Scholar
  17. [17]
    A. Valcan, Evaluation of the Uncertainty of Measurement, Glob. J. Sci. Front. Res. Chem., 13 (2013) 1–6.Google Scholar
  18. [18]
    C. Ehrlich, Terminological Aspects of the Guide to the Expression of Uncertainty in Measurement (GUM), Metrologia, 51 (2014) S145–S154.  https://doi.org/10.1088/0026-1394/51/4/S145.ADSCrossRefGoogle Scholar
  19. [19]
    B.D. Hall, Evaluating Methods of Calculating Measurement Uncertainty, Metrologia, 45 (2008) L5–L8.  https://doi.org/10.1088/0026-1394/45/2/N01.ADSCrossRefGoogle Scholar
  20. [20]
    J. Dobilienė, A. Meškuotienė, and E. Raudienė, Uncertainty Sources Affecting Reliability of Chemical Measurements, MAPAN-J. Metrol. Soc India, 30 (4) (2015) 281–290.  https://doi.org/10.1007/s12647-015-0146-0.Google Scholar
  21. [21]
    A.K. Agrawal, Estimation of the Uncertainty in Chemical Measurements, MAPAN-J. Metrol. Soc India, 23 (2008) 217–224. http://npl.csircentral.net/id/eprint/1014.
  22. [22]
    S. Yadav, and A.K. Bandyopadhyay, Evaluation of Laboratory Performance Through Interlaboratory Comparison, MAPAN-J. Metrol. Soc India, 24 (2) (2009) 125–138.  https://doi.org/10.1007/s12647-009-0016-8.Google Scholar
  23. [23]
    I. Apostol, D. Kelner, X.G. Jiang, G. Huang, J. Wypych, X. Zhang, J. Gastwirt, K. Chen, S. Fodor, S. Hapuarachchi, D. Meriage, F. Ye, L. Poppe, and W. Szpankowski, Uncertainty Estimates of Purity Measurements Based on Current Information: Toward a “Live Validation” of Purity Methods, Pharm. Res., 29 (2012) 3404–3419.  https://doi.org/10.1007/s11095-012-0836-z.CrossRefGoogle Scholar
  24. [24]
    A. Malon, and M. Maj-Zurawska, The New Methods of Determination of Mg2+, Ca2+, Na+ and K+ Ions in Erythrocytes by Ion Selective Electrodes, Sens. Actuators B, 108 (2005) 828–831.  https://doi.org/10.1016/j.snb.2004.12.091.CrossRefGoogle Scholar
  25. [25]
    A.M. García-Alegría, A. Gómez-Álvarez, L. García-Rico, and M. Serna-Félix, Validation of an Analytical Method to Quantify Serum Electrolytes by Atomic Absorption Spectroscopy, Acta Univ. Multidiscip. Sci. J., 25 (3) (2015) 3–12.  https://doi.org/10.15174/au.2015.747.Google Scholar
  26. [26]
    J. Park, G. Nam, and J.O. Choi, Parameters in Cause and Effect Diagram for Uncertainty Evaluation, Accredit. Qual. Assur., 16 (2011) 325–326.  https://doi.org/10.1007/s00769-011-0763-4.CrossRefGoogle Scholar
  27. [27]
    M. Solaguren-Beascoa, V. Ortega, and R. Serrano, On the Uncertainty Evaluation for Repeated Measurements, MAPAN-J. Metrol. Soc India, 29 (1) (2014) 19–28.  https://doi.org/10.1007/s12647-013-0057-x.Google Scholar
  28. [28]
    S. Linko, U. Örnemark, R. Kessel, and P.D.P. Taylor, Evaluation of Uncertainty of Measurement in Routine Clinical Chemistry–Applications to Determination of the Substance Concentration of Calcium and Glucose in Serum, Clin. Chem. Lab. Med., 40 (4) (2002) 391–398.  https://doi.org/10.1515/CCLM.2002.063.CrossRefGoogle Scholar
  29. [29]
    H. Rivas y P. Fernández, Estimación de incertidumbre para medición de Zn por espectrofotometría de absorción atómica-flama. Simposio de Metrología, (2006), México, D.F.Google Scholar
  30. [30]
    A. Pacheco y M. Gutiérrez, Estimación de la incertidumbre en la determinación de magnesio sérico en dos autoanalizadores, Simposio de Metrología, (2006), México, D.F.Google Scholar
  31. [31]
    M. Patriarca, M. Castelli, F. Corsetti, and A. Menditto, Estimate of Uncertainty of Measurement from a Single-Laboratory Validation Study: Application to the Determination of Lead in Blood, Clin. Chem., 50 (8) (2004) 1396–1405.  https://doi.org/10.1373/clinchem.2003.029223.CrossRefGoogle Scholar
  32. [32]
    US Department of Health and Human Services. Medicare, Medicaid and the CLIA Programs; Regulations Implementing the Clinical. Laboratory Improvement Amendments of 1988 (CLIA). Final Rule Fed Regist., 57(1992) 149–162.Google Scholar
  33. [33]
    R. Zhang, H. Ma, H. Li, J. Xu, J. Zhang, Y. Zhang, and Q. Wang, An Improved Candidate Reference Method for Serum Potassium Measurement by Inductively Coupled Plasma-Mass Spectrometry, Clinica Chimica Acta, 420 (2013) 146–149.  https://doi.org/10.1016/j.cca.2012.10.020.CrossRefGoogle Scholar
  34. [34]
    M. Rynning, T. Wentzel-Larsen, and B. J. Bolann, A Model for an Uncertainty Budget for Preanalytical Variables in Clinical Chemistry Analyses, Clin. Chem., 53 (7) (2007) 1343–1348.  https://doi.org/10.1373/clinchem.2007.086371.CrossRefGoogle Scholar
  35. [35]
    M.S. Sylte, T. Wentzel-Larsen, and B.J. Bolann, Estimation of the Minimal Preanalytical Uncertainty for 15 Clinical Chemistry Serum Analytes, Clin. Chem., 56 (8) (2010) 1329–1335.  https://doi.org/10.1373/clinchem.2010.146050.CrossRefGoogle Scholar
  36. [36]
    M.S. Sylte, T. Wentzel-Larsen, and B.J. Bolann, Random Variation and Systematic Error Caused by Various Preanalytical Variables, Estimated by Linear Mixed-Effects Models, Clinica Chimica Acta, 415 (2013) 196–201.  https://doi.org/10.1016/j.cca.2012.10.045.CrossRefGoogle Scholar
  37. [37]
    M. Plebani, Exploring the Iceberg of Errors in Laboratory Medicine, Clinica Chimica Acta, 404 (2009) 16–23.  https://doi.org/10.1016/j.cca.2009.03.022.CrossRefGoogle Scholar
  38. [38]
    G. Lippi, Governance of Preanalytical Variability: Travelling the Right Path to the Bright Side of the Moon? Clinica Chimica Acta, 404 (2009) 32–36.  https://doi.org/10.1016/j.cca.2009.03.026.CrossRefGoogle Scholar
  39. [39]
    L.L. Yu, W.C. Davis, Y. Nuevo Ordonez, and S.E. Long, Fast and Accurate Determination of K, Ca, and Mg in Human Serum by Sector Field ICP-MS, Anal Bioanal. Chem., 405 (2013) 8761–8768.  https://doi.org/10.1007/s00216-013-7320-4.CrossRefGoogle Scholar
  40. [40]
    R.P. Barbagallo, N. Boley, G. Holcombe, S. Merson, C. Mussell, C. Pritchard, P. Stokes, S. Wood, D. Ducroq, and A. Thomas, Production and Certification of Four Frozen Human Serum Certified Reference Materials Containing Creatinine and Electrolytes, Ann. Clin. Biochem., 45 (2008) 160–166.  https://doi.org/10.1258/acb.2007.007126.CrossRefGoogle Scholar
  41. [41]
    R. Kadis, Evaluation of Measurement Uncertainty in Volumetric Operations: The Tolerance-Based Approach and the Actual Performance-Based Approach, Talanta, 64 (2004) 167–173.  https://doi.org/10.1016/j.talanta.2004.02.005.CrossRefGoogle Scholar
  42. [42]
    E. Batista, L. Pinto, E. Filipe, and A.M.H. van der Veen, Calibration of Micropipettes: Test Methods and Uncertainty Analysis, Measurement, 40 (2007) 338–342.  https://doi.org/10.1016/j.measurement.2006.05.012.CrossRefGoogle Scholar
  43. [43]
    S. Lorefice, Traceability and Uncertainty Analysis in Volume Measurements, Measurement, 42 (2009) 1510–1515.  https://doi.org/10.1016/j.measurement.2009.07.016.CrossRefGoogle Scholar
  44. [44]
    B. Sarangi, S. G. Aggarwal, D. Sinha, and P. K. Gupta, Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty, Atmos. Meas. Tech., 9 (2016) 859–875.  https://doi.org/10.5194/amt-9-859-2016.CrossRefGoogle Scholar
  45. [45]
    A.M. García-Alegría, A. Gómez-Álvarez, I. Anduro-Corona, A. Burgos-Hernández, E. Ruiz-Bustos, R. Canett-Romero, M. G. Cáñez-Carrasco, and H.F. Astiazarán-García, Estimation of the Expanded Uncertainty of an Analytical Method to Quantify Aluminum in Tissue of Sprague Dawley Rats by FAAS and ETAAS, MAPAN-J. Metrol. Soc India, (2017).  https://doi.org/10.1007/s12647-017-0203-y.Google Scholar

Copyright information

© Metrology Society of India 2018

Authors and Affiliations

  • A. M. García-Alegría
    • 1
  • M. G. Cáñez-Carrasco
    • 1
  • M. Serna-Félix
    • 2
  • K. K. Encinas Soto
    • 3
  • A. Gómez-Álvarez
    • 3
  1. 1.Department of Biological Chemistry SciencesUniversity of SonoraHermosilloMexico
  2. 2.XT Intelligent AutodidactsHermosilloMexico
  3. 3.Department of Chemical Engineering and MetallurgyUniversity of SonoraHermosilloMexico

Personalised recommendations