Advertisement

MAPAN

, Volume 33, Issue 2, pp 139–145 | Cite as

Design of a Stable DC Voltage Source and Computer Controlling of It Using an Indigenously Developed All-Digital Addressing-Cum-Control Hardware

  • A. Roy
  • N. Batra
  • S. Majhi
  • S. Panja
  • A. Sen Gupta
  • S. De
Original Paper
  • 84 Downloads

Abstract

We have developed a digitally operated addressing and control module (DACM) for addressing and controlling of equipment from a remote computer using a communication protocol developed in-house. This is useful for automation of an experiment that uses multiple equipment in a pre-decided synchronized manner. We also report design of a multipurpose high voltage direct current (DC) source that provides output of 0–100 V with an average stability of 1.90 (36) mV and has minimum step size of 3 mV. Operation of the DACM is examined by selecting the desired equipment, which in this case is the dc source, and remotely controlling its output from a computer. We also show that this can generate voltage with different waveforms within a 0–10 Hz frequency bandwidth. Such computer controlled ultra-stable high voltage sources tuneable to any arbitrary waveforms at low frequencies have many applications such as, driving a piezo for smooth scanning of laser frequencies, tuning length of a Fabry–Perot cavity, biasing of the electrodes in an ion trap and so on.

Keywords

Automation Computer control Digitally operated addressing and control module Regulated DC source 

Notes

Acknowledgements

SD thanks Florian Schreck, U. Amsterdam, Netherlands for useful discussions.

Funding

This work was supported by CSIR-National Physical Laboratory, Department of Science and Technology (Grant No. SB/S2/LOP/033/2013) and Board of Researchin Nuclear Science (Grant No. 34/14/19/2014-BRNS/0309).

References

  1. [1]
    S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an ion trap for trapping single 171Yb+, Curr. Sci. 106 (2014) 1348.Google Scholar
  2. [2]
    N. Batra, B.K. Sahoo and S. De., An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks, Chin. Phys. B, 25 (2016) 113703.CrossRefADSGoogle Scholar
  3. [3]
    A. Acharya, V. Bharath, P. Arora, et al., Systematic uncertainty evaluation of cesium fountain primary frequency standard at NPL India, MAPAN-J. Metrol. Soc India, 32 (2017) 67.  https://doi.org/10.1007/s12647-016-0190-4.CrossRefGoogle Scholar
  4. [4]
    K. Pant, P. Arora, S. Yadav. et al., Generation of quadrupole magnetic field for trapping atoms in Cs fountain being developed at NPL India, MAPAN-J. Metrol. Soc India, 26 (2011) 285.  https://doi.org/10.1007/s12647-011-0026-1.CrossRefGoogle Scholar
  5. [5]
    A. Rastogi, N. Batra, A. Roy, J. Thangjam, V.P.S. Kalsi, S. Panja and S. De, Design of the ion trap and vacuum system for 171Yb –ion optical frequency standard, MAPAN-J. Metrol. Soc India, 30 (2015) 169.CrossRefGoogle Scholar
  6. [6]
    N. Batra, S. Panja, S. De, A. Roy, S. Majhi, S. Yadav and A. Sen Gupta, Design and construction of a helical resonator for delivering radio frequency to an ion trap, MAPAN-J. Metrol. Soc India, 32 (2017) 193.CrossRefGoogle Scholar
  7. [7]
    S. Yadav, A. Acharya, P. Arora, and A. Sen Gupta, An electronic sequence controller for the Cs fountain frequency standard developed at CSIR-NPL India, Measurement, 75 (2015) 192.CrossRefGoogle Scholar
  8. [8]
    A. Agarwal and A. Sen Gupta, Frequency and intensity control of lasers to cool and control caesium atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169.CrossRefGoogle Scholar
  9. [9]
    P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. Sen Gupta, Measurement of temperature of atomic cloud using timeof-flight technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31.CrossRefGoogle Scholar
  10. [10]
    A. Acharya, S. De, P. Arora, and A. Sen Gupta., A universal driver for vibration free operation of mechanical shutter, Measurement, 61 (2014) 16.CrossRefGoogle Scholar
  11. [11]
    H.J. Lewandowski, D.M. Harber, D.L. Whitaker and E.A. Cornell (2003) url - http://jila.colorado.edu/bec/CornellGroup/JLTP Lewandowski2003.pdf.
  12. [12]
    S.F. Owen and D.S. Hal, Fast line based timming system for lab view, Rev. Sci. Instrum., 75 (2004) 259.CrossRefADSGoogle Scholar
  13. [13]
    D.S. Hall, Triggerable general-purpose interface bus controller, Rev. Sci. Instrum., 75 (2004) 562.CrossRefADSGoogle Scholar
  14. [14]
    P.E. Gaskell, J.J. Thorn, S. Alba and D.A. Steck, An open source, extensible system for laboratory timing and control, Rev. Sci. Instrum., 80 (2009) 115103.CrossRefADSGoogle Scholar
  15. [15]
    A. Keshet and W. Ketterle, A distributed, graphical user interface based, computer control system for atomic physics experiments, Rev. Sci. Instrum., 84 (2013) 015105.CrossRefADSGoogle Scholar
  16. [16]
    E.E. Eyler, A single-chip event sequencer and related microcontroller instrumentation for Atomic physics research, Rev. Sci. Instrum., 82 (2011) 013105.CrossRefADSGoogle Scholar
  17. [17]
    E. E. Eyler, Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface, Rev. Sci. Instrum., 84 (2013) 103101.CrossRefADSGoogle Scholar

Copyright information

© Metrology Society of India 2017

Authors and Affiliations

  • A. Roy
    • 1
    • 2
  • N. Batra
    • 1
    • 2
  • S. Majhi
    • 1
  • S. Panja
    • 1
    • 2
  • A. Sen Gupta
    • 2
    • 3
  • S. De
    • 1
    • 2
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Innovative ResearchChennaiIndia
  3. 3.The Northcap UniversityGurgaonIndia

Personalised recommendations