Skip to main content
Log in

Study of Size Distribution in Nanostructured Se58Ge39Pb3 Glass Using Various Characterization Methods

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The present paper aims at the study of size distribution of particles in nanostructured Se58Ge39Pb3 glass using X-ray diffraction (XRD), Transmission electron microscopy (TEM) and UV–visible spectrophotometer. The thin film sample has been prepared using melt quenching technique and inert gas consolidation method. The particle size distribution obtained from XRD and UV–Vis spectrophotometer shows more uncertainty than the results obtained from TEM measurements. The absorption spectra recorded on UV–Vis spectrophotometer is employed to get band gap values corresponding to different size distribution in sample. Further, it is concluded that TEM is the best measurement technique for size distribution as it has less uncertainty in the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Rossetti, J.L. Ellison, J.M. Gibson and L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites, J. Chem. Phys., 80 (1984) 4464–4469.

    Article  ADS  Google Scholar 

  2. W. Sang, Y. Qian, J. Min, D. Li, L. Wang, W. Shi and Y. Liu, Microstructural and optical properties of ZnS:Cu nanocrystals prepared by an ion complex transformation method, Solid State Commun., 121 (2002) 475–478.

    Article  ADS  Google Scholar 

  3. R.R. Prabhu and M. Abdul Khadar, Characterization of chemically synthesized CdS nanoparticles, Pramana, 65 (2005) 801–807.

    Article  ADS  Google Scholar 

  4. S.B. Bhanu Prasanth and S. Asokan, Effect of antimony addition on the thermal and electrical-switching behavior of bulk Se–Te glasses, J. Non-Cryst. Solids, 355 (2009) 164–168.

    Article  ADS  Google Scholar 

  5. Deepika, H. Singh and N.S. Saxena, Electrical properties of Ge1Se2.5 and Ge0.6Se2.5Sn0.4 glasses, Mater. Res. Express, 4 (2017) 035203.

    Article  ADS  Google Scholar 

  6. S. Basak and D. Kundu, Evaluation of measurement uncertainty in determination of lead in glass materials by a standard complexometric method, MAPAN-J. Metrol. Soc India, 27(3) (2012) 175–182.

    Google Scholar 

  7. Deepika, H. Singh and N.S. Saxena, Stability and percolation threshold of Ge42−xPbxSe58 (9 ≤ x ≤ 20) glasses, Trans. Ind. Ceram. Soc., 75 (2016) 20–24.

    Article  Google Scholar 

  8. Deepika and Hukum Singh, Role of Sb substitution on electrical properties of Se–Te Glasses, Indian J. Sci. Technol., 9(48) (2016) 1–8.

    Google Scholar 

  9. A.A. Soliman, Thermal stability of Cu0.3(SSe20)0.7 chalcogenide glass by differential scanning calorimetry, Thermochim. Acta, 423 (2004) 71–76.

    Article  Google Scholar 

  10. J. Vazquez, P.L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, Evaluation of the glass forming ability of some alloys in the Sb–As–Se system by differential scanning calorimetry, J. Alloys Compd., 354 (2003) 153–158.

    Article  Google Scholar 

  11. A.K. Pattanaik and A. Srinivasan, Electrical properties of amorphous Pb–Ge–Se thin films, J. Appl. Sci., 5 (2005) 1–4.

    Article  ADS  Google Scholar 

  12. N.B. Maharjan, D. Bhandari, N.S. Saxena, M.M.A. Imran and D.D. Paudyal, Differential scanning calorimetry studies of Se85Te15−xPbx (x = 4, 6, 8 and 10) glasses, Bull. Mater. Sci., 23 (2000) 369–376.

    Article  Google Scholar 

  13. Deepika, N.S. Saxena, Thermodynamics of glass/crystal transformation in Se58Ge42−xPbx (9 ≤ x ≤ 20) glasses, J. Phys. Chem. B, 114 (2010) 28–35.

    Article  Google Scholar 

  14. Deepika, P.K. Jain, K.S. Rathore and N.S. Saxena, Structural characterization and phase transformation kinetics of Se58Ge42−xPbx (x = 9, 12) chalcogenide glasses, J. Non-Cryst. Solids, 355 (2009) 1274–1280.

    Article  ADS  Google Scholar 

  15. N. Tohge, Y. Yamamato, T. Minami and M. Tanaka, Preparation of n-type semiconducting Ge20Bi10Se70 glass, Appl. Phys. Lett., 34 (1979) 640–641.

    Article  ADS  Google Scholar 

  16. A. Awasthi, B.-S. Wu, C.-N. Liu, C.-W. Chen, S.-N. Uang and C.-J. Tsai, The effect of nanoparticle morphology on the measurement accuracy of mobility particle sizers, MAPAN-J. Metrol. Soc India, 28(3) (2013) 205–215.

    Google Scholar 

  17. A. Patsha, K.K. Madapu and S. Dhara, Raman spectral mapping of III–V nitride and graphene nanostructures, MAPAN-J. Metrol. Soc. India, 28(4) (2013) 279–283.

    Google Scholar 

  18. V. Bonu and A. Das, Size distribution of SnO2 quantum dots studied by UV–visible, transmission electron microscopy and X-ray diffraction, MAPAN-J. Metrol. Soc India, 28(4) (2013) 259–262.

    Google Scholar 

  19. D. Patidar, K.S. Rathore, N.S. Saxena, K. Sharma and T.P. Sharma, Energy band gap studies of CdS nanomaterials, J. Nano Res., 3 (2008) 97–102.

    Article  Google Scholar 

  20. T.P Sharma, D. Patidar, N.S. Saxena, K.B. Sharma and T.P. Sharma, Measurement of structural and optical band gaps of Cd1−xZnxS (x = 4 and 6) nanomaterials, Ind. J. Pure Appl. Phys., 44 (2006) 125–128.

    Google Scholar 

  21. J. Nanda, S. Sapra and D.D. Sarma, Size-selected zinc sulfide nanocrystallites:  synthesis, structure, and optical studies, Chem. Mater., 12 (2000) 1018–1024.

    Article  Google Scholar 

  22. A. Firdous, D. Singh, and M.M. Ahmed, Electrical and optical studies of pure and Ni-doped CdS quantum dots, Appl. Nanosci., 3 (2013) 13–18.

    Article  ADS  Google Scholar 

  23. P. Venkatesu, Doping effect of Mn on structural optical magnetic and electrical properties of CdS nanoparticles, IEEE Xplore conference proceedings of the international conference on advanced nanomaterials and emerging engineering and technologies (2013), pp. 260–263.

  24. J. Tauc, Amorphous and Liquid semiconductor, Plenum, New York (1974).

    Book  Google Scholar 

  25. K. Tripathi, A.A. Bahishti, M.A.M. Khan, M. Husain and M. Zulfequar, Optical properties of selenium–tellurium nanostructured thin film grown by thermal evaporation, Phys. B, 404 (2009) 2134–2137.

    Article  ADS  Google Scholar 

  26. N. Salah, S.S. Habib and Z.H. Khan, Direct bandgap materials based on the thin films of SexTe100−x nanoparticles, Nanoscale Res. Lett., 7 (2012) 509–516.

    Article  ADS  Google Scholar 

  27. E.J. H. Lee, C. Riberieo, T.R. Giraldi, E. Longo and E.R. Leite, Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay, Appl. Phys. Lett., 84 (2004) 1745–1747.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

First author Deepika is highly thankful to Department of Science and Technology, Government of India for financial support vide Reference no. SR/WOS-A/PM-1017/2014(G) under Women Scientist Scheme to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, Singh, H. Study of Size Distribution in Nanostructured Se58Ge39Pb3 Glass Using Various Characterization Methods. MAPAN 33, 165–168 (2018). https://doi.org/10.1007/s12647-017-0240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-017-0240-6

Keywords

Navigation